DRAFT - DO NOT CITE OR CIRCULATE. Page 1

1 Behavioral impacts of disentanglement of a right whale under sedation and the

- 2 energetic cost of entanglement
- 3 4
- 5 Julie van der Hoop¹, Michael Moore¹, Andreas Fahlman^{1,2}, Alessandro Bocconcelli³,
- 6 Clay George⁴, Katharine Jackson⁵, Carolyn Miller¹, David Morin⁶, Tom Pitchford⁴, Teri
- 7 Rowles⁷, Jamison Smith⁶, Barb Zoodsma⁸
- 8
- ⁹ ¹ Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS
- 10 50, Woods Hole, MA 02543, USA.
- ¹¹ ²Life Sciences Department, Texas A&M Corpus Christi, 6300 Ocean Drive, Corpus
- 12 Christi, TX 78412, USA.
- ³ Marine Operations Department, Woods Hole Oceanographic Institution, 266 Woods
- 14 Hole Rd, MS 37, Woods Hole, MA 02543, USA.
- ⁴ Georgia Department of Natural Resources, One Conservation Way, Brunswick, GA
 31520, USA.
- ⁵ Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research
- 18 Institute, 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
- ⁶NOAA Fisheries, 55 Great Republic Drive, Gloucester, MA 01930-2276, USA.
- ⁷ NOAA Fisheries, 1315 East-West Highway, Silver Spring, MD 20910, USA.
- ⁸ NOAA Fisheries, 2382 Sadler Road, Fernandina Beach, FL 32034, USA.

22 Abstract

23 24 Protracted entanglement in fishing gear often leads to emaciation through reduced 25 mobility and foraging ability, and energy budget depletion from the added drag of towing 26 gear for months or years. We examined changes in kinematics of a tagged entangled 27 North Atlantic right whale (Eg 3911), before, during and after disentanglement on 15 Jan 28 2011. To calculate the additional drag forces and energetic demand associated with 29 various gear configurations, we towed three sets of gear attached to a load-cell 30 tensiometer at multiple speeds. Tag analyses revealed significant increases in dive depth 31 and duration; ascent, descent and fluke stroke rates; and decreases in root mean square 32 fluke amplitude (a proxy for thrust) following disentanglement. Conservative drag coefficients while entangled in all gear configurations (mean \pm SD $C_{d.e.go} = 3.4 \times 10^{-3} \pm$ 33 0.0003, $C_{d,e,gb} = 3.7 \times 10^{-3} \pm 0.0003$, $C_{d,e,sl} = 3.8 \times 10^{-3} \pm 0.0004$) were significantly greater 34 than in the nonentangled case ($C_{d,n} = 3.2 \times 10^{-3} \pm 0.0003$; P = 0.0156, 0.0312, 0.007835 36 respectively). Increases in total power input (including standard metabolism) over the 37 nonentangled condition ranged 1.6%-120.9% for all gear configurations tested; 38 locomotory power requirements increased 60.0%-164.6%. These results highlight 39 significant alteration to swimming patterns, and the magnitude of energy depletion in a 40 chronically entangled whale.

41

42 Keywords: Disentanglement, Dtag, Drag, Energetics, Entanglement, Sedation, Right
 43 whale, *Eubalaena glacialis*

45 Introduction

46	Entanglement in fishing gear is the leading cause of detected mortalities of large
47	whales in the Northwest Atlantic (van der Hoop et al. 2012). Upon initial entanglement, a
48	number of outcomes are possible: individuals may die anchored in gear, or may break
49	free, either cleanly or carrying all or a portion of the entangling gear (Clapham et al.
50	1999). Chronic effects of entanglement in free-swimming individuals include systemic
51	infection and debilitation from extensive tissue damage (Cassoff et al. 2011). More
52	common in protracted cases is severe emaciation due to the inability to cope with a
53	negative energy budget, driven by the combined effects of reduced mobility and foraging
54	ability, and increased energetic demand imposed by towing accessory gear for months to
55	years (Moore et al. 2006, Moore and van der Hoop 2012).
56	Whereas disentanglement efforts were first developed to release large whales
57	entangled and anchored in fixed fishing gear (Ledwell et al. 2010), techniques have been
58	adapted to address the issue in free-swimming individuals (Moore et al. 2010).
59	Disentanglement response efforts are coordinated by multiple agencies with the primary
60	goal of removing all entangling gear. During a disentanglement procedure, buoys or
61	floats are often added to trailing gear to increase a whale's drag through the water and
62	slow its movement (Moore et al. 2010). To further reduce boat aversion and allow for
63	close approaches necessary for successful disentanglement, methods have been
64	developed to lightly sedate large whales at sea (Moore et al. 2010).
65	No data exist for large whales on the behavioral impacts of sedation and
66	disentanglement or on the energetic cost of entanglement in fishing gear due to drag.
67	Through detailed spatial and behavioral monitoring by means of a biologging tag (Dtag)

68	(Johnson and Tyack 2003), we examined changes in dive behavior and kinematics of a
69	tagged entangled North Atlantic right whale (North Atlantic Right Whale Catalog
70	(Hamilton et al. 2007) No. 3911, hereafter Eg 3911), before, during, and after
71	disentanglement procedures on 15 Jan 2011. Further, we estimate drag forces experienced
72	by the whale based on its body proportions, and the additional drag forces and energetic
73	demand experienced while entangled in various gear configurations.
74	
75	Methods
76	Eg 3911, born in 2009 (NARWC Database, 2011), was first sighted entangled and
77	displaying consequent emaciation on 25 Dec 2010 by an aerial survey team offshore
78	Ponte Vedra Beach near Jacksonville, FL, USA. The entanglement involved attachment
79	at a minimum of six sites around the mouth, wraps around both pectoral fins, and
80	approximately 30 m of line trailing aft of the flukes (Moore et al. 2012) (Fig. 1). We
81	conducted disentanglement attempts on 29 and 30 Dec 2010, though the whale remained
82	entangled and was tracked by a satellite telemetry buoy. A third and final multiagency
83	disentanglement effort took place 15 Jan 2011 near Melbourne, FL, during which we
84	tagged Eg 3911 with a biologging device (Dtag). Subsequently, we sedated, partially
85	disentangled to the extent possible, administered antibiotics, and tracked the whale for six
86	days via satellite with a Low Impact Minimally-Percutaneous External-electronics
87	Transmitter (LIMPET) (Andrews et al. 2008) (Fig. 2). We observed Eg 3911 dead at sea
88	by an aerial survey team on 1 Feb 2011, and towed her ashore for necropsy performed on
89	3 Feb 2011. The ultimate cause of death was pre-mortem shark predation, though the
90	proximate cause was chronic constrictive deep rope lacerations and severe emaciation

91 (Moore *et al.* 2010, McLellan and Costidis unpublished necropsy report¹). Upon necropsy,
92 we systematically removed, photographed, and described the remaining entangling gear.
93 In total, the entanglement involved approximately 132 m of 1.12 cm diameter floating
94 synthetic line, including six gangions and two fragments of vinyl coated trap mesh. This
95 gear was consistent with that used in fixed trap/pot fisheries, though the target species
96 could not be identified (Morin and Kenney 2011). We used a portion of the entangling
97 gear in the experiments, below.

98 <u>Sedation</u>

99 To determine appropriate sedative dosages, we calculated a range of weight 100 estimates based on a body length estimate (945 cm) obtained from aerial photographs of 101 Eg 3911 next to a vessel of known dimensions and four length-to-weight methodologies 102 (Supplemental Information). We found Eg 3911 to be 20% thinner than adult female right 103 whales (Miller et al. 2012) (see Supplemental Information for details). To consider this 104 emaciation, we reduced weight estimates by 20%, to ~ 7,000 kg. We administered sedative via injection (Moore et al. 2010) of 14 mL (0.1 mg kg⁻¹ 105 body weight) each of 50 mg mL⁻¹ Butorphanol and Midazolam (ZooPharm Inc., Windsor, 106 CO, USA), and sedative reversal via 7 mL (0.05 mg kg⁻¹) of 50 mg mL⁻¹ Naloxone and 107 49 mL of 0.1 mg mL⁻¹ Flumazenil. The reversal needle inserted fully, but on recovery it 108 109 was discovered that the syringe had malfunctioned and the dose remained in the syringe 110 barrel and was not administered. We also administered two doses of antibiotics (56 mL each; total 17.6 g of 220 mg mL⁻¹ Ceftiofur; Pfizer Inc, Madison, NJ, USA). Injections 111 112 occurred via a ballistic syringe system (Paxarms, Timaru, New Zealand; (Moore et al.

¹ William McLellan, Biology and Marine Biology Department, UNC Wilmington, 601 South College Road Wilmington, NC 28403 USA

2010); Fig. 3), with the syringe attached to a stainless steel leader tied to 20 m of 80 kg
test line spooled at the projector barrel tip, and then tied to a custom float. The float is
designed to extract the needle and provide a visual marker for retrieval (Moore *et al.*2010).

117

118 <u>Tagging and Behavior</u>

Prior to the disentanglement, we attached a Dtag at 1004 EDT on 15 Jan 2011 via
suction cup just above the right dorsal midline, midway between the blowhole and tail
(Fig. 3). Deployment lasted 6:11 (h:min).

The Dtag is equipped with depth and temperature sensors, 3-axis accelerometers and magnetometers sampling at 50Hz, and a hydrophone sampling at 96kHz (Johnson and Tyack 2003). We down-sampled sensor data to 5Hz, and calibrated accelerometer and magnetometer measurements to account for the orientation of the tag on the whale (Johnson and Tyack 2003). We derived pitch and roll from the accelerometer and heading from the magnetometer measurements.

128 Dive Parameters

We defined dives as depths >5 m, representing the top 29%-38% of the water column where Eg 3911 was tagged. We estimated bottom depth from bathymetric charts with coordinates of pursuit and disentanglement operations. Tidal range for 15 Jan 2011 was only 30 to 70 cm above chart datum for Cape Canaveral, FL. We calculated proportional depth as the amount of the water column explored relative to available (depth of dive/approximate depth of dive location). We manually detected descent and ascent periods of each dive, reflecting periods of sustained motion to depth and to the 136 surface, respectively. Dive profiles appeared in randomized order for the manual

137 determination of descent and ascent periods to reduce potential bias. We calculated

138 descent and ascent rates as the distance traveled from the surface to the depth at which

139 the descent period ends (or from depth to surface for ascents), over the duration of that

140 period.

Wave drag is greatest when the ratio between the submergence depth *h* of a body of diameter *d* is h/d = 0.5, and becomes negligible at h/d = 3 (Hertel 1969). To determine the relative amount of time spent swimming in more costly conditions, we compared the ratio of time spent above *vs.* below this wave drag limit (h/d = 0.5) between phases. We calculated dive duration (s) from when the animal left the surface (to a depth >5 m) until returning to <1 m depth.

147 Dive Area Ratio (DAR)

We created a dimensionless, depth- and duration-independent index to compare dive shapes under entangled and nonentangled conditions. The Dive Area Ratio (DAR), similar to the Time Allocation at Depth (TAD) Index (Fedak *et al.* 2001), is based on the concept of a time-depth area, being the area enclosed by a dive profile or the integral of dive depth over the dive duration. We therefore calculate the DAR as the ratio of the total dive area (the integral of the dive profile) and the maximum dive area,

154
$$DAR = \frac{A_a}{DT} = \frac{\sum_{i=2}^{n} \frac{(d_{d,i} + d_{d,i-1})}{2} \times \left(\frac{1}{fs}\right)}{DT}$$

(1)

where A_a = integrated actual dive area, d_d = tag-derived depth (m) at *n* intervals during dive, *D* = maximum depth of dive (m), *fs* = tag sampling rate (Hz), and *T* = total dive duration (s).

The DAR differs from the TAD Index in that it does not remove the "necessary travel area" (the area required to descend and ascend to and from maximum depth) from each dive. The time to descend and ascend is of particular interest in this analysis, as changes in drag and buoyancy due to the presence of entangling gear will have the greatest effect in these portions of the dive cycle. The DAR thus provides greater information on the difference in dive shapes over the entire duration of the dive, not only the bottom period between descent and ascent.

165 *Respiration*

We determined respiration rate from aerial observer counts of the number of visual respiration cues per 5-minute interval, from 40 min prior to and 3:45 h:min following tag attachment.

169 Proxies for Thrust

170 The Dtag captures individual fluke strokes as cyclic oscillations in the deviation 171 of the pitch angle (degrees) from mean orientation. We considered three tag-obtained 172 measures of thrust production: (1) fluke stroke rate, the inverse of the time between peaks 173 in pitch angle averaged over 30 s bins (fluke strokes per second, Hz) (Johnson and Tyack 174 2003), which is a relative indicator of thrusting intensity; (2) the root mean square (RMS) 175 energy of fluke amplitude, a measure of signal average and variability and is proportional 176 to power (Semmlow 2012), measured only within dives to discount large changes in pitch 177 associated with surfacing events; and (3) glides, characterized by periods where no fluke

oscillation occurs in the pitch rate signal. We identified glides as segments where the
absolute value of the Hilbert transform of the pitch rate signal was <0.05 (Woodward *et al.* 2006*a*), and visually checked these sequences. Based on previously described gliding
behaviors in right whales (Nowacek *et al.* 2001, Woodward *et al.* 2006*a*), we defined the
minimum glide duration as 5 s.

183 Overall Dynamic Body Acceleration (ODBA)

Following (Wilson *et al.* 2006) and (Fahlman *et al.* 2008), we calculated Overall
Dynamic Body Acceleration (ODBA, g) by smoothing accelerometer measurements in

186 three separate axes, with a window size of 3 s. We then subtracted these smoothed data

187 (static acceleration) from the unsmoothed data to estimate the dynamic acceleration in

188 each axis. Finally, we then calculated ODBA as the sum of the absolute value of dynamic

acceleration in each axis. We observed peaks and identified outliers in ODBA at each

190 surfacing event, and therefore calculated mean ODBA values within dives, between dives,

191 and during descent and ascent periods of each dive.

192 Phase Definitions and Statistical Analyses

193 We defined three phases of the sedation and disentanglement of Eg 3911 (Table

194 2) hereafter referred to as (1) Sedation/Entangled: animal towing gear and attached buoys,

and sedative injection; (2) Disentangled: following removal of most of trailing gear and

196 buoys, administration of antibiotics, and attachment of the satellite LIMPET tag

197 (Andrews et al. 2008); and (3) Recovery: retrieval of injection darts, dart tethers and

198 floats (Moore *et al.* 2010), and the end of active boat approaches.

199 To determine the behavioral effects of sedation on an entangled whale, we used200 Wilcoxon rank sum tests to compare dive parameters and respiration rates within the

Sedation/Entangled phase, between the 21 min prior to and the 50 min following sedative 201 202 injection, but prior to removal of the gear and buoys. We used Three-sample Kruskal-203 Wallis single factor analysis of variance tests with tied ranks and *posthoc* Bonferroni-204 corrected ($\alpha = 0.05/3 = 0.0167$) Wilcoxon rank sum tests to compare the distributions of 205 various dive parameters between Sedation/Entangled, Disentangled and Recovery phases. 206 To compare the observed vs. expected ratio of time spent above and below the wave drag 207 limit between phases, we used Chi-square contingency tables. 208 We compared fluke stroke rate, RMS, and the frequency and duration of glides 209 across phases within the single tag deployment to infer changes in thrust intensity and 210 power requirements. As propulsive (thrusting) forces should equal resistive forces (net 211 buoyancy and drag), we expect thrusting intensity (stroke rate, and RMS) to be greater 212 and for fewer and shorter glides to occur in entangled versus nonentangled conditions.

213 We present all dive parameters as median (IQR) unless otherwise stated.

214 Gear Towing

We conducted a series of tests in Marion Harbor, MA, USA on 13 May 2011 towing three sets of gear off the side of a 7.3 m (24 ft), 25HP motor-propelled Carolina Skiff: (1) 24.93 m of 1.12 cm diameter floating line removed from Eg 3911 in the disentanglement procedure on 15 Jan 2011, 'gear-only'; (2) this same line with two buoys as attached during disentanglement, 'gear-and-buoys'; and (3) 160 m of 0.89 cm sinking line for comparison, 'sinkline', all detailed below.

To measure drag force, we used an MLP-100 load cell tensiometer (Transducer Techniques, Temecula, CA, USA) between two eyebolts threaded into opposite sides of the cell. One eyebolt suspended the load cell parallel to a vertical spar on the side of the

224	Skiff. The second eyebolt attached to a leader running through the pulley at the base of
225	the spar, then immediately attached to the gear (<i>i.e.</i> , the leader produced drag that was
226	negligible compared to the gear). We held the base of the spar at the surface and at 2 m
227	depth, consistent with the animal's body depth of 2.20 m.
228	We modified the drag force signal from the load cell as in Cavatorta et al. (2005)
229	and recorded it through the serial port on a laptop, sampled at 250 ms. We calculated
230	mean (\pm SD) drag forces from the data record for a given gear configuration (gear-only,
231	gear-and-buoys, or sinkline), anchor point (surface or 2 m depth), and boat speed (0.772 –
232	2.98 m s ⁻¹). We measured boat speed via a handheld GPS unit and used this speed as a
233	relative indicator of the effect of whale swimming speed. These speeds are biologically
234	relevant, as right whales are known to swim in the range of 0.52 (Mayo and Marx 1990)
235	to 2.05 m s ⁻¹ (Baumgartner and Mate 2003) and maximum speeds for balaenids have been
236	recorded between 4 - 4.5 m s ⁻¹ (Hamner <i>et al.</i> 1988). Tide was less than 0.5 knot.
237	The entangling gear removed 15 Jan 2011 (Configuration 1; 'gear-only')
238	measured 24.93 m in length, and consisted of parallel arrangements of six line segments
239	for the first 0.7 m, three segments for the next 1.50 m and two segments for the next 2.20
240	m; the remaining 20.53 m was a single piece of line with one gangion (a large knot
241	connecting a second line) and three figure-eight knots (Fig. 4). The combined length of
242	all line segments was 33.63 m.
243	To mimic the configuration on the animal, we attached the buoys added during
244	disentanglement (Configuration 2; 'gear-and-buoys'), an A3 Polyform buoy (42.5 cm
245	diameter) and an NB60 Scanmarin buoy (45.4 cm diameter) to the aft-most figure-eight
246	knots on the removed gear (<i>i.e.</i> , Configuration 1). We connected each buoy to its

247	respective figure-8 knot by an 11.4 cm karabiner and an approximately 1 m long lanyard
248	of 0.95 cm diameter polysteel. The buoys and karabiners used in the tow deployments
249	were identical to those used in the disentanglement procedure; however, during the
250	disentanglement, we attached buoys to the fore-most and aft-most knots. We assume this
251	difference in the gear configuration does not change the results materially.
252	As a control, we towed 160 m of 0.89 cm diameter sinkline (Configuration 3;
253	'sinkline') in a single-line configuration with no knots, gangions, or buoys.
254	Energetic Requirements
255	We applied the following calculations to determine the forces acting on Eg 3911.
256	The Reynolds number, Re, describes the relative importance of viscous and inertial forces
257	acting on a body, calculated as
258	$Re = lU/v \tag{2}$
259	where <i>l</i> is the length of the body (m), <i>U</i> is the velocity or swimming speed (m s ⁻¹) and <i>v</i> is
260	the kinematic viscosity of the surrounding medium $(1x10^{-6} \text{ m}^2 \text{ s}^{-1} \text{ for seawater})$. Reynolds
261	numbers $>5x10^6$, as calculated here and is the case for other large whales, indicate a
262	turbulent boundary layer.
263	Total drag on a body is composed of frictional, pressure, interference, and surface
264	components. Frictional drag, $D_f(N)$, is given by
265	$D = \frac{1}{u^2} + C$

265
$$D_f = \frac{1}{2} \rho U^2 A_w C_f,$$
 (3)

where ρ is the density of the surrounding medium (here seawater, 1025 kg m⁻³), A_w is the total wetted surface area (m²; Alexander 1990) calculated from body mass M (kg) as $A_w =$ 0.08 $M^{0.65}$ (Fish 1993). C_f is a frictional drag coefficient, which depends on boundary 269 layer flow characteristics (*e.g.*, Blake 1983). For a turbulent boundary condition, as
270 calculated above,

271
$$C_f = 0.072(Re^{-1/5}).$$
 (4)

The pressure drag coefficient, C_p , is relatively constant for $Re > 10^6$. By convention, we calculated C_p as a fraction of C_f by calculating C_{D0} , the profile drag coefficient,

275
$$C_{D0} = C_f + C_p = C_f \left[1 + 1.5 \left(\frac{d}{l} \right)^{(3/2)} + 7 \left(\frac{d}{l} \right)^3 \right],$$
 (5)

276

where *d* is the maximum width of the body (or diameter; m) estimated from photographsusing width-to-length ratios of the widest point of the body.

279 We added three drag augmentation factors. (1) Appendages increase interference, 280 frictional, and pressure drag over the theoretical condition due to protrusion from a 281 streamlined body. We used g = 1.3 to account for ~30% increases in drag due to flukes 282 and fins (Fish and Rohr 1999). (2) k accounts for the oscillation of the flukes and body during active swimming, which alters body shape and increases frontal area and C_p (Fish 283 284 and Rohr 1999). Further, boundary layer thinning is expected when the amplitude of the 285 propulsive movement is much greater than the maximum body diameter (Lighthill 1971). 286 Thinning of the boundary layer increases skin friction, C_f , over a greater proportion of the 287 body than if the body were rigid, increasing drag by up to a factor of five (Lighthill 1971). 288 Due to uncertainties on the degree to which whale swimming affects anterior oscillation, 289 we employed values of k = 1 and k = 3 (F. Fish, pers. comm.²).

² Dr. Frank Fish, Professor of Biology, West Chester University, West Chester PA 19383-2112 USA

290 The effect of surface, or wave drag on an object varies with submergence depth (h, h)291 measured from the surface to the center line of the object; m) relative to body diameter, d. 292 Critical relative submergence depth (h/d) values have been established experimentally 293 (Hertel 1966, Hertel 1969) and theoretically (Hoerner 1965) describing the relative 294 contribution of wave drag with depth. Wave drag is highest at the surface (h/d = 0.5) and 295 decreases with submergence, becoming negligible at h/d = 3 (Hertel 1969). To account 296 for surface drag (Hertel 1966, Fish 1993), we determined the augmentation factor γ for 297 entangled ($\gamma = 1.6$) and nonentangled ($\gamma = 1.0$) conditions from tag-derived relative 298 submergence depths (1.81 m and 4.25 m respectively). 299 We then calculated the drag on the body, D_w (N), as $D_w = \frac{1}{2} \rho U^2 S_w C_{D0} \gamma k g$. 300 (6) 301 Line lying flush with the body surface produces a surface protuberance that may 302 disrupt fluid flow over the body, affecting body drag. The total drag of the system is not 303 simply the sum of the drag on the body and on the element, but also the interference 304 between the elements (interference drag) (Blake 1983). The magnitude of interference 305 drag varies non-linearly with the position (% of l) and height of the protuberance (p, m) 306 compared to the length of the body (l, m) (Jacobs 1934, Blake 1983). As protuberance 307 height is increased from p = 0 to p = 0.001l (e.g., from 0 to 1.25 cm diameter line) interference drag is comparatively small, on the order of 10% of the drag of the element. 308 309 Increases in drag over this height scale are slow due to the protuberance being in the 310 body's boundary layer (δ); however, they should not be considered negligible (Jacobs 311 1934). For this height scale, the interference drag coefficient of a protuberance $i(C_{DIi})$ is

312
$$C_{DI,j} = \left(\frac{p_j}{\delta_j}\right)^{(1/3)},$$
 (7)

313 where we calculated boundary layer thickness (δ , m) at the location of protuberance *j* 314 (distance from leading edge, $l_{x,j}$; *m*) based on the ratio between the maximum diameter 315 and the diameter at the location of protuberance *j* ($d_{x,j}$) as

316
$$\delta_j = \left(\frac{d}{d_{\mathbf{x},j}}\right) 0.02l_{\mathbf{x},j} \,. \tag{8}$$

We then calculated the total interference drag, $D_I(N)$, as the sum of the interference drag associated with all *n* protuberances on the frontal projection of the body (Hoerner 1965):

319
$$D_I = \sum_{j=1}^n D_{I,j} = \sum_{j=1}^n \frac{1}{2} \rho U^2 A_{\perp p,j} C_{DI,j}.$$
 (9)

Bodies in water have a shielding effect that reduces drag on objects floating in their wake (Hoerner 1965). In the wake of the first body, the dynamic pressure is reduced and drag is decreased over the distance of x/d = 2, where *x* is the distance between the two bodies (m). Organisms take advantage of reduced drag in a wake by forming queues (*e.g.*, Fish 1995, Bill and Herrnkind 1976), and the same theory holds for an animal towing accessory gear in its wake. Any object at a distance lesser than x/d = 2 should experience a reduction in drag by a factor of approximately 0.75 (Hoerner 1965).

327 We calculated the total drag, D_T (N), on an entangled whale:

328
$$D_T = D_w + a(D_b + D_l) + D_I$$
, (10)

where D_b is the drag on tethered buoys or other accessory gear, D_l is the drag on the attached line, D_l is the interference drag, and *a* is the shielding factor, based on the

- 331 spacing distance, x, between the body and the towed gear where if x/d is less than 2, a =
- 332 0.75, and if x/d is greater than 1, a = 1. In this study, we empirically measured $(D_b + D_l)$.

333 We derive the total power input ($P_{I,T}$; W) required for propulsion at a certain 334 speed under any calculated drag condition (generic *D*) as

335
$$P_{I,T} = P_L + P_{I,B} = (DU/\eta) + P_{I,B},$$
 (11)

336 where P_L is locomotory power, and P_{LB} is power input for standard metabolism, both in

337 W, and η is an efficiency coefficient of 0.15 (Fish 1993, Hind and Gurney 1997). Given

the uncertainties in appropriate metabolic rate estimation for cetaceans (Gallivan 1992),

339 we estimated minimum and maximum standard metabolism (W) using Kleiber $(3.4M^{0.75};$

340 where *M* is body mass in kg), and 3×Kleiber.

Facing an increase in drag, an individual can: (1) maintain a characteristic velocity and exponentially increase energy expenditure to overcome added drag; or (2) swim at a reduced speed in order to maintain the same power output as if under normal conditions (Jones *et al.* 2011). For the latter case, the decrease in velocity (U_{red} , m s⁻¹) to maintain the same power output in an entangled drag scenario (D_T), is

346
$$U_{red} = \left[\frac{P_L \pi U^2}{D_T}\right]^{(1/3)}$$
 (12)

To determine the additional power demands experienced by Eg 3911 while entangled, we compared $P_{I,T}$ for the drag conditions of a nonentangled whale, with surface drag factor γ following disentanglement (*i.e.*, $\gamma = 1.0$), to the conditions of an entangled whale, towing three gear configurations tested in this experiment, with surface drag factor γ calculated for the mean±SD dive depth prior to disentanglement (*i.e.*, $\gamma =$ 1.6).

353

354 **Results**

355 <u>Tagging and Behavior</u>

356 Dive Parameters

357	Eg 3911 completed $n = 152$ dives over the 6 h deployment period, to a median
358	(IQR) depth of 11.50 (10.97) m and duration of 98.7 (82.1) s (Fig. 5).
359	Within the Sedation/Entangled phase, there was no significant difference between
360	the depth or duration of dives completed in the 21 min prior to $(n = 7)$ and the 50 min
361	following ($n = 45$) sedative injection ($Z = 0.402$ and 0.188; $P = 0.6876$ and 0.8511
362	respectively; Table 3).
363	Dive depth increased significantly with every phase ($\chi^2 = 26.66$, <i>P</i> < 0.0001; Fig.
364	6). Median dive depth was significantly (138%) shallower in Sedation/Entangled
365	compared to Disentangled ($Z = -6.121$; $P < 0.0001$). Significant increases in dive depth
366	occurred between Disentangled and Recovery ($Z = 4.607$; $P < 0.0001$), though only by
367	19%. Even when considering increases in approximate regional water column depth with
368	time, proportional dive depth was significantly shallower in Sedation/Entangled (by 95%)
369	compared to following the removal of gear and buoys (<i>i.e.</i> , in Disentangled; $Z = -5.216$; P
370	<0.0001; Fig. 6). Further, we observed no significant difference in proportional dive
371	depth between Disentangled and Recovery phases ($Z = -0.679$; $P = 0.497$).
372	Descent rates (m s ⁻¹) during dives differed significantly between phases (χ^2 =
373	49.87; $P < 0.0001$; Fig. 6), where descents during Sedation/Entanglement were 57%
374	slower than in Disentangled ($Z = -6.287$; $P < 0.0001$). There was no significant difference
375	between the descent rates in Disentangled and Recovery ($Z = 0.535$; $P = 0.5927$).
376	Ascent rates (m s ⁻¹) during dives also differed significantly between phases ($\chi^2 =$
377	46.22; <i>P</i> <0.0001; Fig. 6), with significantly slower ascents (31%) during
378	Sedation/Entanglement compared to in Disentanglement ($Z = -5.948$; $P < 0.0001$). Similar

to descent rate, ascent rate did not differ between Disentanglement and Recovery (Z = 0.090; P = 0.9285).

381	For Eg 3911 ($h = 1 \text{ m}$, $d = 2.20 \text{ m}$), wave drag is maximal within 0.1 m of the
382	surface, and becomes negligible below 5.58 m depth ($h = 6.58$ m). The ratio of time spent
383	above vs. below the wave drag limit (5.58 m) over the entire deployment was 1.06,
384	meaning Eg 3911 spent almost equal amounts of time above and below the threshold.
385	However, significantly more time was spent in surface waters where energy requirements
386	are higher before (7.02:1) vs. following sedative injection (2.47:1; $\chi^2 = 141$; P <0.0001;
387	Table 3), and while entangled (<i>i.e.</i> , during Sedation/Entangled; 2.87:1) vs. during
388	Disentangled (0.6656:1) and Recovery phases (0.4405:1; $\chi^2 = 3220$; <i>P</i> < 0.0001).
389	Dive duration (s) differed significantly between phases ($\chi^2 = 26.67$; <i>P</i> <0.0001;
390	Fig. 6), where dives during Sedation/Entangled were 56% shorter than in
391	Disentanglement ($Z = -3.151$; $P < 0.0016$). Dive duration also increased significantly, by
392	30%, from Disentanglement to Recovery ($Z = 3.4218$; $P = 0.0006$).
393	Dive Shape
394	Dive shape, as measured by the DAR, differed significantly between phases (χ^2 =
395	19.1083; $P = 0.0001$; Fig. 7), with significantly lower DAR during Sedation/Entangled
396	than in Disentangled or Recovery phases ($Z = -3.1615$, 4.3410 ; $P = 0.0016$, <0.0001
397	respectively). There was no significant difference in the DAR between Disentangled and
398	Recovery phases ($Z = 0.9443$, $P = 0.3450$).
399	Respiration
400	Respiration rate per 5-minute interval did not change following sedative delivery

400 Respiration rate per 5-minute interval did not change following sedative delivery 401 (P = 0.4312; Table 3). We detected no significant difference between respiration rate 402 before (5.00 (2.00) / 5 min) and after (5.00 (1.75) / 5 min) buoy and gear removal (P =

403 0.1679).

404 *Proxies for Thrust*

Fluke stroke rate increased significantly following sedative injection (Z = -8.417, P < 0.0001; Table 3). Fluke stroke rate within dives differed significantly between phases $(\chi^2 = 18.7179; P = 0.0001;$ Fig. 8), being significantly lower during Sedation/Entangled compared to the Disentangled phase (Z = -3.928; P < 0.0001). Fluke stroke rate did not differ in Disentangled and Recovery phases (Z = -0.0323, P = 0.9742). Following sedative injection, RMS energy within dives increased significantly, by

411 28% (Z = -3.0832; P = 0.0020; Table 3). RMS energy was 12% lower after gear and buoy

412 removal (Z = 3.1943; P = 0.0014). From Disentangled to Recovery phases, RMS energy

413 within dives significantly decreased (Z = -2.5960; P = 0.0094).

414 Glide duration did not differ significantly before and after sedative injection (P = 0.1993), or before and after the removal of the gear and buoys (Z = 0.334; P = 0.9734).

416 While glides occurred in all phases, the portion of the dive cycle in which gliding

417 occurred differed between phases. When entangled (n = 18), 50% of glides occurred

418 during the bottom period, 33% during descent and 17% on ascent. However, following

419 disentanglement (n = 41), 85% of glides were performed during the bottom period, and

420 15% during ascent. No glides were performed during descent following disentanglement.

421 *ODBA*

422 Within dives, ODBA did not differ significantly between phases ($\chi^2 = 5.4288$; P =423 0.0662). During dive descents, ODBA differed significantly between phases ($\chi^2 =$ 424 8.2055; P = 0.0165), being significantly (10%) lower during Sedation/Entangled than in

- 425 the Disentangled phase (Z = -2.7230; P = 0.0065; Fig. 8). There was no significant
- 426 difference between ODBA in dive descents between Disentangled and Recovery phases
- 427 (Z = -1.2603; P = 0.2076). During ascents, ODBA did not differ significantly between
- 428 phases ($\chi^2 = 2.8613$; P = 0.2392; Fig. 8).
- 429 <u>Gear Towing</u>
- 430 Mean drag forces (N) of gear removed from Eg 3911 were consistently though not
- 431 significantly greater at all speeds with buoys attached (Table 4). Sinkline drag forces
- 432 were intermediate between gear-only and gear-and-buoy configurations (Table 4). Mean
- 433 drag forces showed no significant difference between surface and 2 m anchor points for
- 434 gear-only (P = 0.4595), gear-and-buoys (P = 0.4888) or sinkline (P = 0.4965)
- 435 configurations (Devore 2008).

436 Energetic Requirements

437 The mean theoretical drag coefficient of a nonentangled right whale $(C_{d,n})$ of Eg

- 438 3911's dimensions, swimming at $0.75 2.9 \text{ m s}^{-1}$ ranged from 3.7×10^{-3} to 2.9×10^{-3}
- 439 respectively (mean±SD; $C_{d,n} = 3.2 \times 10^{-3} \pm 0.0003$; Fig. 10). The drag coefficient for each
- 440 entangled gear scenario was calculated by applying Equation 6 ($C_d = D_T/(1/2) \rho U^2 A_w \gamma k$

441 g). Though drag coefficients for Eg 3911 entangled in all gear configurations differed

based on the value of k (Fig. 9), the most conservative estimates with k = 3 ($C_{d,e,go} =$

443 3.4x10⁻³ ± 0.0003, $C_{d,e,gb} = 3.7x10^{-3} \pm 0.0003$, $C_{d,e,sl} = 3.8x10^{-3} \pm 0.0004$) were

444 significantly greater than in the nonentangled case (Wilcoxon signed rank, P = 0.0156,

445 0.0312, 0.0078 respectively).

446 Having made low (Kleiber) and high (3×Kleiber) estimates of BMR, and using 447 two values of k (1 and 3), we present drag and power requirements as the lower (k = 1,

448	BMR = Kleiber) and upper ($k = 3$, BMR = 3×Kleiber) bounds of the model results. Drag
449	forces on Eg 3911 while not entangled ranged from 37.2 N to 1263 N at 0.75 - 2.9 m s ⁻¹ .
450	The associated total power requirements in the nonentangled condition (Eq. 11) ranged
451	from 2791 W - 16140 W (Fig 10). Locomotory power requirements ranged from 191 -
452	25021 W.
453	Drag forces on Eg 3911 entangled in various gear configurations are summarized
454	in Table 5. Across all gear configurations, mean entangled drag values ranged from 62.1
455	N to 2421 N. Increases in total power input over the normal (nonentangled) condition
456	ranged from 4.1%-58.8% for the gear-only configuration, 4.9%-82.5% for the sinkline
457	configuration, and 4.8%-120.9% for the gear-and-buoy configuration (Fig. 9).
458	Locomotory power requirements increased on average 70.5% (SD 9.5) for the gear-only
459	configuration, 91.0% (22.5) for the sinkline configuration, and 101.9% (31.9) for the
460	gear-and-buoy configuration (total range 60.0%-164.6%). Alternatively, to maintain the
461	same power output over the range of swimming speeds, an individual entangled in gear-
462	only, sinkline, and gear-and-buoy configurations would need to decrease swimming
463	speed by 16.2% (SD 1.5), 19.2% (3.0), or 20.5% (3.9), respectively (total range 14.5%-
464	27.7%).
465	

466 **Discussion**

We describe the effect of sedation and near-complete disentanglement of a freeswimming entangled right whale, Eg 3911. Tag data show major changes in locomotion
before and after disentanglement. Modeling the drag forces of the removed gear, we show
that entangled whales can have significantly increased energetic demand.

471 Sedative injection had little to no effect on dive parameters or respiration rate. It is 472 likely that in this condition, behavior is dominated by the effect of entangling gear rather than of a light sedative. At the dosage level (0.1 mg kg^{-1}) . Midazolam has not been found 473 474 to cause cardiovascular, respiratory, or airway reflex changes in humans (Reves et al. 475 1985), though a previous study reports increased respiration rates following sedation in 476 right whales (Moore et al. 2010). 477 After sedation, Eg 3911 spent a greater proportion of time below the wave-drag 478 threshold (5.58 m), though showed no difference in maximum dive depth. This increased 479 submergence time may be linked to the lethargy associated with sedation. Moore *et al.* 480 (2010) describe less forceful surfacing events in sedated right whales. However, 481 increased fluke rate and RMS energy post sedation may suggest the drugs had an 482 analgesic effect in reducing entanglement-associated pain, and therefore freeing the 483 animal to locomote more strongly. 484 The near-complete disentanglement of Eg 3911 resulted in significant increases in 485 dive duration and depth. Similarly, Williams et al. (1993) found that increased drag 486 loading in harbor seals led to shortened dive times. As dive duration is considered limited by the total amount and rate of consumption of body oxygen stores, the elevated energetic 487 488 cost associated with additional entanglement drag likely quickly depletes available 489 oxygen, leading to premature dive termination. 490 Changes in kinematics and dive parameters indicate the whale altered its behavior 491 immediately following disentanglement. Previous studies suggest that propulsive forces

493 intensity when buoyancy is experimentally altered (Aoki et al. 2011). Animals may also

are increased in response to changes in resistive forces, where elephant seals adjust stroke

492

494	actively alter swimming dynamics or posture to compensate for an added load. As
495	suggested by Watson and Granger (1998), animals facing an increase in drag may either
496	(1) maintain characteristic velocity, exponentially increasing energy expenditure; or (2)
497	reduce swimming speed in an attempt to reduce the cost of locomotion. Fluke stroke rate,
498	which has been shown to correlate with speed in dolphins (Fish 1993) and other
499	cetaceans (Fish 1998), increased significantly following disentanglement. Further, Eg
500	3911 showed descent and ascent speeds 57% and 31% faster (respectively) after
501	disentanglement, greater than the expected $14.5\% - 27.7\%$ as calculated above. While
502	changes in swimming speed were likely due to a combination of factors rather than
503	energy conservation alone (e.g., sedation, pursuit by a vessel), this case suggests that
504	entanglement significantly alters swimming modes.
505	The greater increase in descent speed (57%) vs. ascent speed (31%) following
506	disentanglement likely highlights the effects of both drag and buoyancy related to the
507	entangling gear and buoys. In order to dive to depth, an individual must overcome
508	resistive buoyant forces. More active swimming is thus required on descent, while
509	ascents can be passive (Nowacek et al. 2001). Such buoyant effects are also evident in
510	dive shape. The overall depth- and duration-normalized dive area (DAR) was
511	significantly lower while entangled. Dive descents to, and ascents from maximum depth
512	were more gradual, and less time was spent in the bottom phase of the dive while the
513	animal was entangled as compared with the behavior following disentanglement.
514	Given that the added buoys were further from the whale than the water column
515	was deep, the buoys should have never been submerged to provide an upwards buoyant
516	force that Eg 3911 could take advantage of to conserve energy in diving (Nowacek et al.

517	2001). Glides occurred in all phases of the dive cycle, indicating that passive swimming
518	was not timed to take advantage of changes in buoyancy by gliding on ascent while
519	entangled. The emaciated condition of Eg 3911 may have led to negative buoyancy, as
520	has been found in emaciated bottlenose dolphins (Dunkin et al. 2010), and dive depths
521	were much shallower than the predicted depth of lung collapse in cetaceans $(30 - 235 \text{ m})$
522	(Fahlman 2008). It is thus likely that glides were employed to conserve energy (Videler
523	and Weihs 1982, Williams 2001) rather than to optimize the benefits of buoyancy.
524	ODBA has shown to be a reliable estimator for activity and metabolic rate in free-
525	swimming animals (Fahlman et al. 2008). It was thus expected that ODBA be greater
526	under the entangled condition; however, ODBA was often lower while entangled,
527	compared to after disentanglement. We suggest that restraint by the drag and buoyancy of
528	the gear may have reduced Eg 3911's ability to make large dynamic movements.
529	Accelerometer measurements determine only the movement of the animal (i.e., net
530	movement) and those forces associated, but not the forces required to move against any
531	materials that may be restraining movement (<i>i.e.</i> , total exertion). Consider a running
532	parachute: the runner expends considerably more energy with the parachute, though their
533	motion is more limited and is slower than without the apparatus. The application of
534	ODBA to free-swimming and restrained cases likely requires separate metabolic
535	calibrations for each condition, which are not available for entangled large whales at this
536	time.
537	Together, the effects of added buoyancy, added drag, and reduced swimming
520	anad due to towing assessmy assessments threats to entended wholes. If hypersesses

speed due to towing accessory gear pose many threats to entangled whales. If buoyancyoverwhelms an animal's ability to descend to the depth of its preferred prey, its foraging

ability may be significantly compromised, accelerating the transition to a negative energy
balance. Increased time spent in surface waters results in greater overall drag, due to
surface effects (Hoerner 1965, Hertel 1969), and places individuals at greater ship strike
risk (Nowacek *et al.* 2001, Parks *et al.* 2012). Reduced swimming speed will lead to
increases in travel time, potentially delaying an entangled individual's arrival to feeding
or breeding grounds in the case of migratory species (Watson and Granger 1998, Jones *et al.* 2011).

547 Most significant, however, is the energy drain associated with added drag. The 548 drag experienced by an animal is significantly affected by the size of the animal relative 549 to the entangling gear, and its configuration, position of attachment, placement in the 550 animal's wake, and surface area (Feldkamp 1985). The addition of buoys to entangling 551 gear during disentanglement procedures to increase surface area, buoyancy, and 552 turbulence does significantly increase drag forces; however, this method has been used 553 successfully to disentangle whales that have survived to breed (Robbins and Knowlton 554 2012, Robbins and Landry 2012). Therefore, we suggest that current practice be 555 continued in adding buoys only for short-term operations, such as a single 556 disentanglement attempt. The benefits of partial or full gear-removal likely outweigh the 557 short-term energetic impact buoy-addition may incur. 558 Since not all entanglements can be resolved during a single attempt, a 36 cm 559 diameter satellite/VHF telemetry buoy is the current method of tracking entangled 560 individuals for later re-sighting and disentanglement. In eight cases, these buoys have 561 also provided sufficient drag to allow whales to remove some or all remaining gear (S.

Landry pers. comm.³). Since the current telemetry buoy does create drag force (*ca*. 76 N at 1.3 m s⁻¹,(Woodward *et al.* 2006b)) entanglement responders should continue to make every effort to: use telemetry on a case-by-case basis, strategically place the telemetry buoy to minimize impacts, remove as much of the original trailing gear to minimize additional drag force and reduce the duration of buoy placement. Longer-duration, lower drag telemetry buoy designs should continue to be developed for tracking entangled individuals for later disentanglement.

569 To reduce locomotory costs, marine mammals have adapted low drag coefficients. 570 Drag has been estimated from Dtag records (Miller et al. 2004, Simon et al. 2009, 571 McGregor 2010), though this method requires a measure of speed, which cannot be 572 obtained from this tagging event due to boat noise and low pitch angles. Still, the theoretical coefficient we estimated for Eg 3911 $(3.7 \times 10^{-3} \text{ to } 2.8 \times 10^{-3} \text{ over a range of})$ 573 574 speeds) falls well within the range of previously estimated drag coefficients for large whales $(5.2 \times 10^{-3} - 1.4 \times 10^{-2})$ (Miller *et al.* 2004, McGregor 2010). Significant increases 575 576 (2.3%-69.2%) in the drag coefficient occur in the entangled scenario, leading to 60.0%-577 164.6% increases in locomotory power output.

These energetic requirements are only related to propulsion in an entanglement scenario and do not consider increased thermoregulation to compensate for loss of body fat, or stress-related changes in metabolic rate, which have increased up to 16.25% in entangled northern fur seals despite increased resting time (Feldkamp *et al.* 1988). Though fecal glucocorticoid studies have shown markedly elevated stress hormone levels

³ Scott Landry, Provincetown Center for Coastal Studies Marine Animal Entanglement Response, 5 Holway Ave, Provincetown MA 02657 USA

in a severely entangled right whale (Hunt *et al.* 2006), the relationships between
entanglement stress and metabolic rate are too complex to be considered here.

585 High energetic requirements and negative energy balance are not uncommon in 586 large whales. Right whales routinely enter a phase of energy deficit during the fasting 587 cycle associated with annual migrations between high-latitude foraging habitats and low-588 latitude calving areas. Sufficient endurance to survive the fasting phase and subsequently 589 recoup losses in the following foraging season are likely adaptations, though prolonged 590 periods of an imbalance of greater magnitude may impact an individual's energy reserve 591 to a point beyond which recovery is not possible (Millar and Hickling 1990). The 592 magnitude of power output due to drag of entangling gear almost certainly would make 593 such long distance (~2,900 km, from the Gulf of Maine to Florida (Kraus *et al.* 1986)) 594 fasting migrations much more energetically costly for an entangled whale.

595 A simple calculation can illustrate both the effects of increased drag, and of 596 reduced swimming speed (Watson and Granger 1998, Jones et al. 2011). Using our most 597 conservative estimate, a nonentangled right whale swimming 2,900 km, at an average speed of 1.5 m s⁻¹ could complete a one-way migration in 22 d, expending 7.3×10^9 J of 598 599 energy. Entangled in the gear-only configuration, an individual could migrate at the same speed, arriving on time and expending 9.3×10^9 J of energy (a 27% increase) or could 600 swim at a reduced speed to arrive 5 d late, expending 9.6×10^9 J (a 31% increase). If this 601 602 same calculation is made with a more energetically costly entanglement scenario (e.g., gear-and-buoys), the entangled individual could arrive on-time, expending 1.0×10^{10} J (a 603 37% increase), or 5 days late expending essentially the same 1.0×10^{10} J. Under both 604 605 entanglement and speed maintenance or reduction scenarios, the energy store budgeted

- for a nonentangled one-way migration $(7.3 \times 10^9 \text{ J})$ would be exhausted between 71%-78%
- 607 of the distance to the destination.

608	These results provide the first visualization of significant alteration to swimming
609	patterns associated with entanglement. Understanding the major behavioral and energetic
610	implications of towing accessory gear is crucial in considering the sub-lethal effects of
611	persistent entanglement in a critically endangered population.
612	
613	
614	Acknowledgements
615	
616	We gratefully acknowledge the collaborative efforts of Florida FWC, EcoHealth Alliance,
617	Georgia DNR, NOAA SER, Provincetown Center for Coastal Studies, Georgia Aquarium,
618	St Johns County's Beach Services and Environmental Division, Hubbs-Sea World,
619	University of Florida, Tricia Naessig, Susan Barco, Megan Stolen, the Atlantic Large
620	Whale Disentanglement Network and many others who assisted with the disentanglement

and necropsy of this case. Funding sources include NOAA Cooperative Agreement

622 NA09OAR4320129, PO EA133F09SE4792, the M.S. Worthington Foundation, the

623 North Pond Foundation, Sloan and Hardwick Simmons. The research and

- 624 disentanglement was conducted under National Oceanic Atmospheric Administration
- 625 Permit 932-1905-00/MA-009526 issued to Dr. Teresa Rowles.
- 626
- 627 Tables
- 628

629 Table 1. List of symbols

Symbol	Units	Definition
δ	m	Boundary layer thickness
~		Surface drag augmentation
γ		factor
η		Propulsive efficiency
	kg m ⁻³	Density of surrounding
ρ	Kg III	medium
a		Shielding factor
A_a		Integrated actual dive area
A_w	m^2	Total wetted surface area
$A \perp_p$	m^2	Frontal area of protuberance
C_d		Drag coefficient
C_{DI}		Interference drag coefficient
C_{D0}		Profile drag coefficient
C_{f}		Frictional drag coefficient
C_p		Pressure drag coefficient

		Maximum body width, or
d	m	diameter
d_d	m	Tag-derived depth (m)
d_x		Diameter at a distance l_x
	m	from the leading edge
D	m	Maximum depth of dive
D_b	N	Buoy drag
D_f	N	Frictional drag
D_I	N	Interference drag
D_l	N	Line drag
D_T	N	Total drag
D_w	N	Whale body drag
fs	Hz	Tag sampling rate
		Appendage drag
8		augmentation factor
		Submergence depth,
1.		measured from the surface
h	m	to the center line of the
		body
1-		Profile drag augmentation
k		factor
l	m	Length of body
1		Distance from the leading
l_x	m	edge
М	kg	Body mass
р	m	Protuberance height
Р	W	Power
Re		Reynolds number
Т	s	Total dive duration
U	m s ⁻¹	Velocity (swimming speed)
II.	m s ⁻¹	Reduced velocity due to
U_{red}	111 5	increased drag condition
v	$m^2 s^{-1}$	Kinematic viscosity of
v		surrounding medium
		Spacing distance between
x	m	whale and (first) towed
		body

Table 2. Timeline of events on 15 January 2011 in Sedation/Entangled, Disentangled and
 Recovery phases of Eg 3911.

Phase	Dtag Elapsed Time (s)	GPS Time (EST)	Event
Sedation/Entangled	0	10:04:18	Dtag attachment
	1217	10:24:00	Sedation induction
	5048	11:28:00	Possible cut with
			spring knife

	5348	11:33:00	Cut
	5648	11:38:00	Cut
	6008	11:44:00	Cut
	6188	11:47:00	Cut
	6428	11:51:00	Cut
Disentangled	6667	11:55:00	Buoys slack and removed
	9223	12:36:00	Attachment of LIMPET Tag
	9548	12:43:00	Sedation reversal dart: did not deploy
	9548	12:43:00	Antibiotic dart
	12248	13:28:00	Antibiotic dart unsuccessful attempt
	13808	13:54:00	Antibiotic dart
Recovery	15248	14:18:00	Dart tethers, floats, and 2/4 darts recovered. Vessel <i>Cabretta</i> left scene; Vessel <i>Orion</i> following at 50-300 m distance.
	22268	16:15:00	Tag off
			- O

634 **Table 3.** Median (IQR) respiration rate (/5 min), dive depth (m), proportional dive depth,

635 dive duration (s) and surface interval (s), time spent above:below the significant wave

drag depth, fluke stroke rate (Hz) and fluke stroke root-mean-square (RMS) energy

637 (degrees) before and following sedation injection, but prior to gear and buoy removal.

638 Significance values (P) from Wilcoxon rank sum tests are presented.

	Pre-Injection	Post-Injection	Р	
Respiration Rate (/5 min)	5.00 (4.50)	5.00 (1.75)	0.4312	
Dive Depth (m)	6.70 (3.07)	6.67 (1.86)	0.6876	
Proportional Dive Depth	0.500 (0.229)	0.477 (0.122)	0.2835	
Dive Duration (s)	70.40 (15.55)	71.00 (45.80)	0.8511	
Time above:below significant depth	7.02:1	2.87:1	< 0.0001	
Fluke stroke rate (Hz; flukes/s)	0.277 (0.049)	0.288 (0.058)	< 0.0001	
Fluke stroke RMS energy (degrees)	0.0798 (0.0124)	0.1023 (0.0163)	0.002	

640 Table 4. Mean (SD) drag forces (N and kg) exerted by (1) 33.63m of fishing gear and (2)

			0	,	0,	• • •	
641	gear and buoy	confi	gurations	removed	l from Eg	3911, and (3)) 160m of sinkline at surface

Tow Point	Configuration	Vessel Speed (m s^{-1})	Drag Force (N)
Surface	Gear Only	0.772	2.9 (2.0)
		1.49	21.6 (3.9)
		2.83	59.8 (4.9)
Surface	Gear and Buoys	0.772	16.7 (2.9)
		1.49	55.9 (12.7)
		2.73	377.6 (36.3)
Surface	Sinkline 160m	0.772	11.8 (2.9)
		0.772	8.8 (3.9)
		0.772	11.8 (3.9)
		1.49	80.4 (2.9)
		2.73	202.0 (23.5)
Bottom	Gear Only	0.772	12.7 (2.9)
		1.49	76.5 (6.9)
		2.52	415.8 (28.4)
		2.73	2.9 (2.0)
Bottom	Gear and Buoys	0.772	36.3 (3.9)
		1.49	77.5 (9.8)
		2.98	80.4 (13.7)
Bottom	Sinkline 160m	0.772	29.4 (3.9)
		1.49	70.6 (6.7)
		2.83	194.2 (24.8)

and bottom (2m) towpoints at various boat speeds (m s⁻¹) 642

643

Table 5. Total drag forces (N) on, and power output (W) required by, Eg 3911 swimming 644 645 entangled in various configurations (Gear Only, Gear and Buoys, and Sinkline) of fishing

646 gear, and the percentage increase in power, or percent decrease in swimming velocity due

647 to increased drag over the normal (nonentangled) condition. Ranges represent the lower

and upper bounds of values of k (profile drag augmentation factor) and metabolic rate 648

649 (see text).

	Velocity	Total	Total	Locomotor	Percent	Percent	Percent	
	$(m s^{-1})$	Drag	Power	Power (W)	Total	Locomotor	Velocity	
		(N)	(W)		Power	Power	Decrease	
					Increase	Increase		
Gear		62.1 -	2920 -				14.5 -	
Only	0.77	178.4	8718	320 - 918	4.1 - 4.6	60.0 - 67.2	15.8	
		223.0 -	4818 -	2218 -	20.8 -		15.4 -	
	1.49	603.9	13806	6006	26.4	65.3 - 83.2	18.3	
		577.4 -	12304 -	9704 -	44.0 -		15.5 -	
	2.52	1556.5	33957	26157	56.5	65.8 - 84.5	18.5	
		656.8 -	14538 -	11938 -	58.8 -		15.4 -	
	2.73	1784.3	40234	32434	46.5	65.0 - 82.2	18.1	
	2.83	676.5 -	15361 -	12671 -	55.7 -	62.8 - 75.6	15.0 -	

		1881.8	43297	35497	46.3		17.1
Gear							
and		73.9 -	2980 -				20.5 -
Buoys	0.77	190.2	8778	380 - 978	6.8 - 4.8	70.6 - 98.9	16.3
		260.3 -	5189 -	2589 -	24.0 -	75.5 -	17.1 -
	1.49	641.1	14176	6376	36.2	113.8	22.4
		953.9 -	19939 -	17339 -	66.2 -	92.5 -	19.6 -
	2.73	2081.5	45635	37835	117.9	164.6	27.7
		1094.7					
		-	24376 -	21776 -	69.1 -	90.3 -	19.3 -
	2.98	2420.9	55957	48157	120.9	158.2	27.1
Sinkline		74.4 -	2983 -		4.39 -	71.0 -	16.7 -
	0.77	190.7	8780	383 - 981	6.9	100.2	21.4
		268.7 -	5272 -	2672 -	24.7 -	77.8 -	19.5 -
	1.49	649.5	14260	6460	38.3	120.7	27.4
		775.9 -	16704 -	14103 -	54.4 -	76.0 -	17.2 -
	2.73	1903.5	42400	34600	82.5	115.3	22.6
		808.2 -	17844 -	15244 -	54.6 -	74.2 -	16.9 -
	2.83	2013.5	45780	37980	80.1	109.7	21.9

651

652 Figure Titles

653

Figure 1. Aerial photograph of right whale Eg 3911 on 30 Dec 2010, showing complex
entanglement in the head and pectoral fins. Photo under NOAA Fisheries Permit #5941759

657

Figure 2. Satellite telemetry track of right whale Eg 3911 (black) swimming entangled
from 25 Dec 2010 to 15 Jan 2011, and following disentanglement (red; 15 Jan 2011 to 21
Jan 2011) performed from vessels *Cabretta* (blue) and *Orion* (green). Colored circles
represent track starting points. The white circle represents Eg 3911's track at the
beginning of the disentanglement effort on 15 Jan.

663

Figure 3. Location of attachment of a suction-cup attached Dtag on right whale Eg 3911 a: Aerial view, with the Dtag visible on right flank, circled in black. b: Lateral view of right flank with the Dtag just above waterline. Three partially extruded darts are shown caudal to the tag. The darts have all folded at the skin surface through water drag. Photos under NOAA Permit 932-1905-00/MA-009526.

669

Figure 4. Fishing gear removed from right whale Eg 3911 on 15 Jan 2011. The total length of the configuration is approximately 24.93 m, with a combined line length of 33.63 m. A tape measure (left) is drawn to 1 m for spatial reference.

673

Figure 5. Dive profile of right whale Eg 3911 over the course of a 6:11 (hr:min) Dtag attachment. Estimated bottom depth (m; horizontal black line) and event markers are plotted for reference.

- 677
- Figure 6. Boxplots of dive parameters of right whale Eg 3911 separated into phases (1)
 Sedation/Entangled, (2) Disentangled, and (3) Recovery in the DTAG record of right
 whale Eg 3911. Brackets denote significant differences between two phases. Asterisks
 indicate outliers.
- 682
- 683 **Figure 7.** Representative dive profiles (black solid line), maximum dive areas (black
- dashed line), and the calculated Dive Area Ratio (DAR), for phases of (a)
- Sedation/Entanglement, (b) Disentangled, and (c) Recovery in the Dtag record of right
 whale Eg 3911. The distribution of the DAR for each phase is shown in (d), with brackets
 to denote significant differences between two phases. See text for phase definition and
 details.
- 689

Figure 8. Boxplots of fluke stroke rate, Root Mean Square (RMS) fluke amplitude, and
Overall Dynamic Body Acceleration (ODBA) on dive descent and ascent, separated into
phases (1) Sedation/Entangled, (2) Disentangled, and (3) Recovery in the DTAG record
of right whale Eg 3911. Brackets denote significant differences between two phases.

- 694 Asterisks indicate outliers.
- 695

Figure 9. Drag coefficient of right whale Eg 3911 at various swimming velocities in the
nonentangled condition (line), and while entangled in gear-only (squares), gear-andbuoys (triangles) and sinkline (circles) configurations using minimum (closed symbol)
and maximum (open symbol) parameter estimates.

700

Figure 10. Minimum (open symbol, dashed line) and maximum (closed symbol, solid
line) estimates of total power input (W) of right whale Eg 3911 while nonentangled
(lines) and entangled in gear-only (squares), gear-and-buoys (triangles) and sinkline
(circles) configurations.

705

706

707 Literature Cited708

- Alexander, D. E. 1990. Drag coefficients of swimming animals: effects of using different
 reference areas. Biological Bulletin 179:186-190.
- Andrews, R., R. Pitman and L. Ballance. 2008. Satellite tracking reveals distinct
 movement patterns for Type B and Type C killer whales in the southern Ross Sea,
 Antarctica. Polar Biology 31:1461-1468.
- Aoki, K., Y. Y. Watanabe, D. E. Crocker, *et al.* 2011. Northern elephant seals adjust
 gliding and stroking patterns with changes in buoyancy: validation of at-sea
 metrics of body density. Journal of Experimental Biology 214:2973-2987.
- Baumgartner, M. F. and B. R. Mate. 2003. Summertime foraging ecology of North
 Atlantic right whales. Marine Ecology Progress Series 264:123-135.
- Bill, R. G. and W. F. Herrnkind. 1976. Drag reduction by formation movement in spiny
 lobsters. Science 193:1146-1148.
- 721 Blake, R. W. 1983. Fish locomotion. Cambridge University Press, Cambridge, UK.

722	Cassoff, R. M., K. M. Moore, W. A. McLellan, S. G. Barco, D. S. Rotstein and M. J.
723	Moore. 2011. Lethal entanglement in baleen whales. Diseases of Aquatic
724	Organisms 96:175-185.
725	Cavatorta, D., V. Starczak, K. E. Prada and M. J. Moore. 2005. A note on the friction of
726	different ropes in right whale (Eubalaena glacialis) baleen: an entanglement
727	model. Journal of Cetacean Research and Management 7:39-42.
728	Clapham, P. J., S. Young and R. J. Brownell. 1999. Baleen whales: conservation issues
729	and the status of the most endangered populations. Mammal Review 29:35-60.
730	Devore, J. 2008. Probability and statistics for engineering and the sciences. Thomson
731	Higher Education, Belmont, CA.
732	Dunkin, R. C., W. A. McLellan, J. E. Blum and D. A. Pabst. 2010. The buoyancy of the
733	integument of Atlantic bottlenose dolphins (Tursiops truncatus): Effects of
734	growth, reproduction, and nutritional state. Marine Mammal Science 26:573587.
735	Fahlman, A. 2008. The pressure to understand the mechanism of lung compression and
736	its effect on lung function. Journal of Applied Physiology 104:907-908.
737	Fahlman, A., R. Wilson, C. Svärd, D. A. S. Rosen and A. W. Trites. 2008. Activity and
738	diving metabolism correlate in Steller sea lion Eumetopias jubatus. Aquatic
739	Biology 2:75-84.
740	Fedak, M. A., P. Lovell and S. M. Grant. 2001. Two approaches to compressing and
741	interpreting time-depth information as collected by time-depth recorders and
742	satellite-linked data recorders. Marine Mammal Science 17:94-100.
743	Feldkamp, S. D. 1985. The effects of net entanglement on the drag and power output of a
744	California sea lion, Zalophus californianus. Fishery Bulletin 83:692-695.
745	Feldkamp, S. D., D. P. Costa and G. K. DeKrey. 1988. Energetic and behavioral effects
746	of net entanglement on juvenile northern fur seals, Callorhinus ursinus. Fishery
747	Bulletin 87:85-94.
748	Fish, F. E. 1993. Power output and propulsive efficiency of swimming bottlenose
749	dolphins (Tursiops truncatus). Journal of Experimental Biology 185:179-193.
750	Fish, F. E. 1995. Kinematics of ducklings swimming in formation: consequences of
751	position. Journal of Experimental Zoology 273:1-11.
752	Fish, F. E. 1998. Comparative kinematics and hydrodynamics of odontocete cetaceans:
753	morphological and ecological correlates with swimming performance. Journal of
754	Experimental Biology 201:2867-2877.
755	Fish, F. E. and J. J. Rohr. 1999. Review of dolphin hydrodynamics and swimming
756	performance. US Navy SPAWAR Systems Center Technical Report 1801. 193 pp.
757	Fortune, S. M. E. 2012. North Atlantic right whale growth and energetics. M.Sc.,
758	University of British Columbia, Vancouver, B.C. 93 pp.
759	Gallivan, G. A. 1992. What are the metabolic rates of cetaceans? Physiological Zoology
760	65:1285-1297.
761	Geraci, J. R. and V. J. Lounsbury. 2005. Marine mammals ashore: a field guide for
762	strandings. National Aquarium in Baltimore, Baltimore, Maryland.
763	Hamilton, P. K., A. R. Knowlton and M. K. Marx. 2007. Right whales tell their own
764	stories: the photo-identification catalog. Pages 75-104 in S. D. Kraus and R. M.
765	Rolland eds. The urban whale: North Atlantic right whales at the crossroads.

766Harvard University Press, Cambridge, MA.

7/7	
767	Hamner, W. A., G. S. Stone and B. S. Obst. 1988. Behavior of southern right whales,
768	Eubalaena australis, feeding on the Antarctic krill, Euphausia superba. Fishery
769	Bulletin 86:143-150.
770	Hertel, H. 1966. Structure, form, movement. Reinhold Publishing, New York, NY.
771	Hertel, H. 1969. Hydrodynamics of swimming and wave-riding dolphins. Pages 31-63 in
772	H. T. Andersen ed. The biology of marine mammals. Academic Press, New York.
773	Hind, A. T. and W. S. C. Gurney. 1997. The metabolic cost of swimming in marine
774	homeotherms. Journal of Experimental Biology 200:531-542.
775	Hoerner, S. F. 1965. Fluid dynamic drag. Published by Author, Midland Park, NJ.
776	Hunt, K. E., R. M. Rolland, S. D. Kraus and S. K. Wasser. 2006. Analysis of fecal
777	glucocorticoids in the North Atlantic right whale (Eubalaena glacialis). General
778	and Comparative Endocrinology 148:260-272.
779	Jacobs, E. N. 1934. Airfoil section characteristics as affected by protuberances 16 pp.
780	Johnson, M. and P. Tyack. 2003. A digital acoustic recording tag for measuring the
781	response of wild marine mammals to sound. IEEE Journal of Oceanic
782	Engineering 28:3-12.
783	Jones, T. T., B. Bostrom, M. Carey, <i>et al.</i> 2011. Determining transmitter drag and best-
784	practice attachment procedures for sea turtle biotelemetry. NOAA Technical
785	Memorandum NMFS SWFSC-480:1-58.
786	Kraus, S. D., J. H. Prescott, A. R. Knowlton and G. E. Stone. 1986. Migration and
787	calving of right whales (<i>Eubalaena glacialis</i>) in the western North Atlantic.
788	Report of the International Whaling Commission (Special Issue 10):139-144.
789	Ledwell, W., K. Curren, H. Huntington and C. Hood. 2010. The whale man of
790	Newfoundland and Labrador: Jon Lien 1939-2010. Canadian Field-Naturalist
790 791	124:384-398.
791	
	Lighthill, M. J. 1971. Large-amplitude elongated-body theory of fish locomotion.
793	Proceedings of the Royal Society of London Series B, Biological Sciences
794 705	179:125-138.
795	Mayo, C. A. and M. K. Marx. 1990. Surface foraging behaviour of the North Atlantic
796	right whale, <i>Eubalaena glacialis</i> , and associated zooplankton characteristics.
797	Canadian Journal of Zoology 68:2214-2220.
798	McGregor, A. E. N. 2010. The cost of locomotion in North Atlantic right whales
799	Eubalaena glacialis. PhD, Duke University, Durham, NC 182 pp.
800	Millar, J. S. and G. J. Hickling. 1990. Fasting endurance and the evolution of mammalian
801	body size. Functional Ecology 4:5-12.
802	Miller, C. A., P. B. Best, W. L. Perryman, M. F. Baumgartner and M. J. Moore. 2012.
803	Body shape changes associated with reproductive status, nutritive condition and
804	growth in right whales Eubalaena glacialis and E. australis. Marine Ecology
805	Progress Series 459:135-156.
806	Miller, P. J. O., M. Johnson, P. Tyack and E. A. Terray. 2004. Swimming gaits, passive
807	drag and buoyancy of diving sperm whales Physeter macrocephalus. Journal of
808	Experimental Biology 207:1953-1967.
809	Moore, M., R. Andrews, T. Austin, et al. 2012. Rope trauma, sedation, disentanglement,
810	and monitoring-tag associated lesions in a terminally entangled North Atlantic
811	right whale (Eubalaena glacialis). Marine Mammal Science:n/a-n/a.

- Moore, M. J., A. Bogomolni, R. Bowman, *et al.* 2006. Fatally entangled right whales can die extremely slowly. Pages 1-3 OCEANS 2006.
 Moore, M. J., A. R. Knowlton, S. D. Kraus, W. A. McLellan and R. K. Bonde. 2004.
- Moore, M. J., A. R. Knownon, S. D. Kraus, W. A. McLenan and R. K. Bonde. 2004.
 Morphometry, gross morphology and available histopathology in North Atlantic
 right whale (*Eubalaena glacialis*) mortalities (1970-2002). Journal of Cetacean
 Research and Management 6:199-214.
- Moore, M. J. and J. M. van der Hoop. 2012. The Painful Side of Trap and Fixed Net
 Fisheries: Chronic Entanglement of Large Whales. Journal of Marine Biology
 2012:4.
- Moore, M. J., M. Walsh, J. Bailey, *et al.* 2010. Sedation at sea of entangled North
 Atlantic right whales (*Eubalaena glacialis*) to enhance disentanglement. PloS one
 5:e9597.
- Morin, D. and J. Kenney. 2011. 2010 Large Whale Entanglement Report. National
 Marine Fisheries Service. 70 pp.
- Nowacek, D. P., M. P. Johnson, P. L. Tyack, K. A. Shorter, W. A. McLellan and D. A.
 Pabst. 2001. Buoyant balaenids: the ups and downs of buoyancy in right whales.
 Proceedings of the Royal Society of London Series B, Biological Sciences
 268:1811-1816.
- Parks, S. E., J. D. Warren, K. Stamieszkin, C. A. Mayo and D. Wiley. 2012. Dangerous
 dining: surface foraging of North Atlantic right whales increases risk of vessel
 collisions. Biology Letters 8:57-60.
- Reves, J. G., R. J. Fragen, H. R. Vinik and D. J. Greenblatt. 1985. Midazolam:
 pharmacology and uses. Anesthesiology 62:310-324.
- Robbins, J. and A. R. Knowlton. 2012. Apparent survival of North Atlantic right whales
 after entanglement in fishing gear. Final Report for NOAA CA
 #NA09OAR4320129. 29 pp.
- Robbins, J. and S. Landry. 2012. Apparent survival and sub-lethal effects of
 entanglement on Gulf of Maine humpback whales. Final Report for NOAA CA
 #NA09OAR4320129. 36 pp.
- Semmlow, J. 2012. Signals and systems for bioengineers: a MATLAB-based introduction.
 Academic Press, Waltham, MA.
- Simon, M., M. Johnson, P. Tyack and P. T. Madsen. 2009. Behaviour and kinematics of
 continuous ram filtration in bowhead whales (*Balaena mysticetus*). Proceedings of
 the Royal Society of London Series B, Biological Sciences 276:3819-3828.
- Sumich, J. L. 1986. Growth in young gray whales (*Eschrichtius robustus*). Marine
 Mammal Science 2:145-152.
- van der Hoop, J. M., M. J. Moore, S. G. Barco, *et al.* 2012. Assessment of management to
 mitigate anthropogenic effects on large whales. Conservation Biology 27:121-133.
- Videler, J. J. and D. Weihs. 1982. Energetic advantages of burst-and-coast swimming of
 fish at high speeds. Journal of Experimental Biology 97:169-178.
- Watson, K. P. and R. A. Granger. 1998. Hydrodynamic effect of a satellite transmitter on
 a juvenile green turtle (*Chelonia mydas*). Journal of Experimental Biology
 201:2497-2505.

Williams, T. M. 2001. Intermittent swimming by mammals: a strategy for increasing energetic efficiency during diving. American Zoologist 41:166-176.

857	Williams, T. M., W. A. Friedl and J. E. Haun. 1993. The physiology of bottlenose
858	dolphins (Tursiops truncatus): heart rate, metabolic rate and plasma lactate
859	concentration during exercise. Journal of Experimental Biology 179:31-46.
860	Wilson, R. P., C. R. White, F. Quintana, L. G. Halsey, N. Liebsch, G. R. Martin and P. J.
861	Butler. 2006. Moving towards acceleration for estimates of activity-specific
862	metabolic rate in free-living animals: the case of the cormorant. Journal of Animal
863	Ecology 75:1081-1090.
864	Woodward, B. L., J. P. Winn and F. E. Fish. 2006a. Morphological specializations of
865 866	baleen whales associated with hydrodynamic performance and ecological niche. Journal of morphology 267:1284-1294.
867	Woodward, B. L., J. P. Winn, M. J. Moore and M. L. Peterson. 2006b. Development of a
868	towed telemetry tag for tracking the long term movements of right whales at sea.
869	Final Report for NOAA Award # NA04NMF4720400. 18 pp.
870	
871	
872	
873	Supplemental Information
874	
875	We used four methods to estimate body weight from length. (1) Age-weight and
876	length-weight functions (Moore et al. 2004) approximated the weight of a two year old or
877	950 cm right whale to 6,717 and 6,396 kg respectively, though the paucity of the data at
878	these age values suggests a more plausible range of 8,000 – 10,000 kg. (2) An additional
879	age-dependent length-weight function (Fortune 2012) estimated 10,551 kg. (3) To
880	address the degree of emaciation of the individual and its effect on the above weight
881	estimates, we estimated width-to-total body length ratios at intervals of 10% of the body
882	length from the tip of the rostrum and compared to width-to-length ratios measured using
883	vertical aerial photogrammetry of 10 adult female right whales (Miller et al. 2012) (Table
884	S1). This comparison suggests Eg 3911 was on average 20% thinner than other adult
885	female right whales, allowing for a weight estimation of between $6,400 - 8,440$ kg. (4)
886	We reduced other scaling factors for gray whales (Sumich 1986) and generic cetaceans
887	(Geraci and Lounsbury 2005) by 20% to account for emaciation to obtain estimates of
888	7,048 kg and 7,200 kg respectively.

- **Table S1.** Width-to-total body length ratios at intervals of 10% of the body for 10 mesomorphic right whales and Eg 3911.

	Width to Total Body Length Ratio								
	10%	20%	30%	40%	50%	60%	70%	80%	
Mesomorphic Right	Mesomorphic Right								
Whales $(n = 10)$	0.149	0.191	0.226	0.22	0.207	0.176	0.126	0.063	
Eg3911	0.132	0.175	0.199	0.195	0.156	0.121	0.078	0.051	
Eg3911:Mesomorphic									
ratio	0.887	0.92	0.88	0.887	0.751	0.684	0.617	0.798	
Mean Ratio								0.803	