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Pulsed Line Source Response of a Thin Sheet
With High-Contrast Dielectric and Conductive
Properties—A Time-Domain Analysis

Adrianus T. de Hoop, Member, IEEE, Ling Ling Meng, Student Member, IEEE, and
Li Jun Jiang, Senior Member, IEEE

Abstract—A methodology is presented for analytically modeling
the reflection and transmission of line-source excited pulsed elec-
tromagnetic fields at a thin, planar layer with high-contrast dielec-
tric and conductive properties. Closed-form analytic time-domain
expressions are derived for the field components in a 2-D setting
via an extension of the Cagniard—DeHoop method. The response
to the power exponential source and the power exponential mono-
cycle pulse were studied using the newly proposed method.

Index Terms—Cagniard-de Hoop method, high-contrast thin
layers, power exponential monocycle pulse, power exponential
pulse, pulsed electromagnetic (EM) fields.

I. INTRODUCTION

N THE design of integrated electronic circuits and devices
for ultra-high bit-rate signal processing, the research of
pulsed electromagnetic (EM)-field signal transmission along
thin sheets of highly conducting material is an issue of in-
creasing interest. This holds, in particular, for signals with
ultrashort pulse rise times and ultrashort pulse time widths,
with spectral content in the terahertz regime. In this regime,
the traditional metals can no longer be modeled as perfectly
conducting and the associated decay in amplitude and, even
more important, the broadening of the pulse shape are issues to
be accounted for in the design procedure. The pulse broadening
itself is giving rise to limits on the pulse repetition rate in
the signals that carry the binary information, because of the
resulting pulse crowding.
In this paper, we analyze the pulsed EM-field signal transfer
in a canonical model configuration. It consists of a pulsed elec-
tric-current line source, oriented parallel to a thin sheet with high
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contrasts in its conductive and dielectric properties with respect
to its embedding free space, that emits an EM field. The elec-
tric-field strength of the propagated EM field at some distant
point is taken as the received signal. The constitutive proper-
ties of the thin sheet are modeled via the thin-sheet, high-con-
trast boundary conditions that have been derived in [1] (where
also references to related methods in the earlier literature can
be found). Preliminary results to the problem have been re-
ported in [2]. Closed-form time-domain (TD) expressions for
the field components are constructed with the aid of an exten-
sion of de Hoop’s modification to the Cagniard method for han-
dling pulsed-field propagation in layered media [3]-[7].
Section II contains the description of the configuration and
the formulation of the problem. The corresponding problem
in the wave slowness domain is constructed in Section III. In
Section IV, the solution to the problem in the wave slowness
domain is presented. Section V discusses the transformation of
this solution back to the space-time domain. Section VI gives
two types of line source pulses. Section VII gives a number of
illustrative numerical results. Section VIII concludes this paper.

II. DESCRIPTION OF THE CONFIGURATION AND FORMULATION
OF THE PROBLEM

The position in the configuration is specified by the coordi-
nates {1, 22,23} € R3 with respect to a Cartesian reference
frame with the origin O and the three mutually perpendicular
base vectors {%1,%2,%3} of unit length each. In the indicated
order, the base vectors form a right-handed system. The time
coordinate is £ € R. Differentiation with respect to x,, is de-
noted by d.,,; J; is a reserved symbol denoting differentiation
with respect to 7.

A line source of electric current with volume source density

-]2($1.,[L’3., t) = I(t)é((ﬂl,xg — h) (1)

electric current /(¢) and located at {z1 = 0,—00 < 22 <
oc, &3 = h}, with k > 0, in a homogeneous, isotropic, loss-
less medium with electric permittivity € > 0 and magnetic per-
meability ¢ > 0, generates a 2-D, w2-independent, EM field
with nonvanishing components {H1, Fa, H3}(«1, w3,t). The
pertaining EM-field equations are

01H3 - ag,Hl -+ ec‘)tEQ = —I(t)(s(Tl. r3 — h), (2)
01E2 + H atH3 = () (3)
03E2 — [ é)tHl =0. (4)
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line source of <)
electric current

Fig. 1. Configuration with the highly contrasting thin sheet.

In the plane {3 = 0}, a thin layer of vanishingly small thick-
ness d and with high contrasts in dielectric and conductive prop-
erties is present as shown in Fig. 1. Its properties are modeled
via the thin-sheet boundary conditions [1]

lim Es(xq,x3,1)
= lim Eg(fﬂl.,mg,t)
.’L’gTO
= FEa(x1,0,t) for allz; € R.t € R, ©)
lim Hi(x1,x3,t) — lim Hy (21, 23,t)
{Egi[) {[73T0

= (Gp + CL8 ) Fa(x1,0,t) forallz; € Rt € R

(6)
where
d/2
GL = lim/ op(z3)dzs (7)
dlo ry=—d/2 ( )
where o1,(23) is the electric conductivity of the layer and
/2
CL = lim/ er(x3)dxs (®)
dlo w;;*—d/Z ( )

where ep (23) is the electric permittivity of the layer.

It is assumed that the electric current excitation starts to act at
the instant £ = 0 and that prior to this instant, the field quantities
vanish throughout the configuration (initial condition).

III. FIELD PROBLEM IN THE WAVE SLOWNESS DOMAIN

The problem is solved with the aid of an extension of de
Hoop’s modification [5] of the Cagniard technique [3], [4]. It
yields closed-form time-domain expressions for the field com-
ponents in the configuration. Exploiting the time invariance of
the configuration and the causality of the source and field quan-
tities, the method starts with the one-sided time Laplace trans-
formation

{ﬁl', EZv ﬁS}(J;l', ']:37 S)
= / exp(—st){Hy, Eo, H3}Hx1, 23, t)dt
Jt=0
fors € C, Re(s) > 0. (9)

The transforms in the left-hand side are analytic in the right-half
{s € C,Re(s) > 0} of the complex s-plane (Fig. 2). In view
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Im(s) =

{Hl. Eg H;}}(.I'l .13, 8)
analytic

——e—e—0—0—0> Iy
s

Fig. 2. Domain of analyticity and Lerch sequence in the complex time Laplace
transform plane.

of Lerch’s theorem ([8, 63—65], the interrelation between the
time-domain functions and their Laplace transform’s counter-
parts is unique when the latter are specified at the sequence of
equidistant values of the transform parameter s (Fig. 2)

L={seRs=s0+nhsg>0h>0n=0,1,2,...}

(10)
on the positive real s-axis. (Note that in this theorem, causality
is a decisive property.) Under the transformation (9) and the

zero-value initial conditions, the operator J; is replaced with a
multiplication by s. Furthermore

(Lerch sequence)

(I, Ey, H3} (21,73, 5))sec € R (11)

a property that is needed in our later analysis. Next, the spatial
shift invariance of the configuration in the x;-direction enables
the use of the wave slowness representation

{1{11-/E2a1€13}(l‘1~,11?3a5)
s [ S o
=95 exp(—spry){Hy, By, Hs}(p, w3, s)dp  (12)
T, p=—ioc
where p is the (complex-valued) wave slowness parameter.
Through this representation, the operator 0 is replaced with
—sp. Furthermore, using the properties of the Dirac delta
distribution

Jo(p, s, 8) = I(s)6(xs — h). (13)
With this, the field (2)—(4) transform into
—spHs — 93H, + se By = —1(s)6(z3 — h) (14)
—spE~’2+.9;Lﬁ3 =0 (15)
O3Es — sy Hy =0 (16)
and the boundary conditions (5)—(6) into
}‘135% EQ(])’ €3, S) = 1131%%) EQ(p: x3, S)
P;ﬁ] Hi(p,ws,s) — ql};ﬁ) Hi(p, xs,s)
= (GL + s CL)EQ(]’]./O,S). (18)
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IV. WAVE SLOWNESS-DOMAIN FIELD EXPRESSIONS

Defining the incident field {H!, ES, Hi} as the field that
would exist in the absence of the contrasting layer, (14)—(16)
lead to

O3ES — s> (p)ES = s p1(5)8(ws — 1) (19)
where
y=(c?—p")? (20)
withyv > 0 forp € [ and
c=(ep) M2 1)
From (19), it follows that:
B = () T2 LN 22)

27(p)
where X1 = |@3 — h|. In the half-space {(1,22) € R? 23 >
0}, we now write the total field as the sum of the incident and
the reflected field {HY, EY, Hi}. In the half-space {(x,x2) €
R2, 23 < 0}, we denote the total field as the transmitted field
{H;,ES, HS}. Taking into account that the reflected field and
the transmitted field travel away from the scattering thin layer,
we write their electric-field wave slowness representation as

exp [-s7(p) X3]

E":uﬁp,sfs (23)
where X3 = z3 + h, with 3 > 0, and

- . . exp[—sy(p) X}

By = 1 T(p,5)i(s) C2DNL gy

29(p)

where Xi = h — z3, with z3 < 0. In (23), R(p, s) is the
wave slowness domain reflection coefficient; in (24), and
T(p, s) is the wave slowness domain transmission coefficient.
Using (22)—(24) in (15)—(16) and substituting the result in the

boundary conditions (17)—(18), we obtain

R(p,s) = =1+ T(p,s), (25)
- . Br(p)
Tp.s) = g O T (26)
with
L 29(p)
Pule) = 5= @7

V. SPACE-TIME EXPRESSIONS FOR THE ELECTRIC-FIELD
CONSTITUENTS

Based on (22)—(24), the expressions for the time Laplace
transformed electric-field constituents are written as

E;’r’t(xl,xg, $) = spul(s)G (0, 23, 5) (28)
where
éi(.7717.773, s)
1 o exp {—s [pz1 +v(p)Xi] }
= — dp, (29)
2mi Jp=—ioo 27(1))
G (a1, a3, 8)
1l oxp {— s [pz X}
= _— R(p/ .5') exp { 5 [pTl + P}/(p) d]}dp,
2mi Sy oo 2+(p)

(30)
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ét(ZL‘l-, xs3, S)
1 ico T(p 9 exp{—s U;I;(;W(P)Xg]}dp

2wl Jp=—ico

(€2))

are the corresponding Green’s function constituents. Note that
the integrands, considered as a function of p and with s real
and positive, have no poles in the complex p-plane, only the
branch points at p = F¢ 1. This is indicative for the absence
of true surface waves like, for example, in elastodynamics, the
Rayleigh wave at the stress-free boundary of an elastic solid, the
Scholte wave at a fluid/solid boundary, and the Stoneley wave
at the interface of two elastic solids. This does, however, not
imply that no large surface effects can occur.

The time-domain counterparts of (29)—(31) are determined
with the aid of an extension of the standard Cagniard-de Hoop
method [5]. Accordingly, the integrands in the integration with
respect to p are, away from the imaginary axis, continued an-
alytically into the complex p-plane, cut along the branch cuts
{1/e < |Re(p)| < oo,Im(p) = 0}, taking Re([y(p)] > 0
for all p in the cut plane. Under the application of Cauchy’s
theorem and Jordan’s lemma ([9, p. 1054-1056] of complex
function theory, the integration along the imaginary p-axis is re-
placed with one along the hyperbolic path (“modified Cagniard”
or “Cagniard-DeHoop” path, as shown in Fig. 3)

pr1+y(p)Xs=71lor T <7 < 00 (32)

where X3 > 0,7 = D/cand D = (23 + X3)¥/2 > 0, while 7
replaces p as the variable of integration. In the relevant Jacobian,

the relation
Op/or =iy(p)/(v> — T*)'/? 33)

is used.

Next, Schwarz’s reflection principle of complex function
theory is used to combine the integrations in the upper and
lower halves of the complex p-plane. Parametrizing the upper
part of the modified Cagniard path through

T X
ple1, X3,7) = n. + 1—3(7—2 - T2)1/2

D2 D2
forT <7<oc (34)
which has the consequence that

7('7"17 X3a T) = V[ﬁ(mlﬂ X3? T)]

forT <7m<oc (35
and (29) leads to

i ; I L
G ('/I',l?XBﬂS) = %/T:T] exp(—sT)de
(36)
and (30) to
A . L[~
G (x1,X5,8) = 7 ./T:T" exp(—s7)

dr

x Re [1+ AE’) } !

ﬂL(]_)r> + GL/CL + s (7-2 _ Tr2)1/2
(37)
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Cagniard-DeHoop path

3
2
31
=
S (o) .
=)
*
@) =
=7z
=3

R e,
¢ * Re(p)

Fig. 3. Cagniard-DeHoop path of integration in the complex slowness plane
({151/4\—:3 = 075)

and (31) to
A 1 00
Gt (w1, X5, 5) = 5 /T:T'v exp(—s7)
BL(p") 1
RRe 1 38
‘ {/wt) +Gu/Cuts) 2Tzt O

where (25)—(27) have been used and the superscripts " refer
to the incident, reflected, and transmitted wave constituents,
respectively.

In (34), Lerch’s uniqueness theorem of the one-sided Laplace
transformation ([8, pp. 63—65] directly yields

1

G o X t) = oy

Ht-TH. (39
If in (37) and (38), the term in brackets in the integrands had
been independent of s, Lerch’s theorem would, here as well,
directly provide the corresponding functions of time. With
the aid of the Schouten—Van der Pol theorem of the one-sided
Laplace transformation [10], [11, pp. 124-126], [12], and [13,
pp- 232-236], we proceed further, however, and apply further
rules of the inverse Laplace transformation to obtain

1 1

t
R R Re ot
27 (12 — Tr2)1/2 + 2 /T:Tl_ c{BL(@")

x exp{—[fL(P") + GL/CLI(t — 7)}}

Gr (.L17X§,f) = |:

« m&-] H(t - T7) (40)
and
& (w1, X0 1) = [% / t_Tt Re{L(7")
x exp{~[BL(P") + GL/CL](t — 7)}}
x mw] H(t —TY). (41)

(Note that due to the presence of 7 in G(p""), the right-hand
sides of (40) and (41) are not time convolutions.) Since 3, (7"")
is complex-valued, its occurrence in the exponential function is
expected to lead to oscillatory phenomena whose magnitude is
the more pronounced the larger the imaginary part of G, (p"")
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Power Exponential Pulse

ty/t: =0.62993

2 3 4 5
Lt

Fig. 4. Example of a power exponential pulse.

is with respect to its real part. Evidently, this ratio is position
dependent and the phenomenon is expected to be larger than
the ratio |z1|/X §t is, that is, closer to the boundary or, which
is equivalent, at large horizontal offsets.

Equation (28) finally leads to the time-domain expressions
for the electric-field constituents

(

ir t .
E;’I’t(ajl,.’lj;g,t) = I(f) *) Gl’r’t(.’]jl,.’lig,t) (42)

where (IF) denotes the time convolution. Further investigation
into the effect of the different parameters on waveshapes re-
quires a study via the numerical evaluation of the relevant in-
tegrals in (40)—(42). This is discussed in the next section.

VI. FEEDING ELECTRIC CURRENT PULSE SHAPES

Two types of feeding electric current pulse shapes will be
used: the power exponential pulse and the power exponential
monocycle pulse [14], [15]. Their definitions and properties are
given as follows.

A. Power Exponential Pulse

The power exponential pulse belongs to the class of unipolar
pulses. Unipolar pulses do not change sign with time and have
a single maximum in their absolute value. Unipolar pulses are
typically suited for modeling electric currents that are associ-
ated with the discharge of an initially charged capacitor in an
otherwise resistive electric circuit.

A convenient three-parameter unipolar pulse is the power ex-
ponential pulse, characterized by its pulse amplitude I,,.x, its
pulse rise time t,, and the power v of its initial increase with

time
1(F) = Tax (})V oxp [_,, (ti _ 1)] H)

withv >0  (43)
where H (1) denotes the Heaviside unit step function:
H(t) ={0,1/2,1} for {t <0,t=0,t>0}.  (44)

An example of a power exponential pulse is shown in Fig. 4.
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B. Monocycle Pulse

In all cases where there is an electric or electronic circuit,
no net electric charge is transported (as is the case in all closed
electrically conducting loops), the condition

/t T Idt =0

Jt=0

(45)

applies. The simplest manner to satisfy (45) is to take I(#) to
be a function with a single zero, a so-called monocycle pulse.
The condition is elegantly accommodated by taking the pulse
shape of a monocycle pulse to be the time differentiated one
of a unipolar pulse. Then, the pulse rise time of the differenti-
ated pulse manifests itself as the zero crossing of the constructed
monocycle pulse. For the power exponential pulse (43), this re-
sults in

0t () )
- Iktﬁ (1 - %) (;)1
X exp [—y (% _ 1)] H

In digital signal transfer, the first peak in each of the constituents
in a monocycle pulse train is indicative of the binary value it
represents. For these kinds of applications, it is customary to
consider the corresponding peak value as the amplitude of the
pulse. Furthermore, the zero crossing time #g, is taken as one
of its characteristics. The two extrema of the right-hand side of
(46) follow from equating to zero its time derivative. This yields

withev > 1. (46)

v(v —1) = 2% [tox + V2 (t/tox)? =0 (47)
which has the solutions
ttox = 1 F v Y2, (48)
From this, it follows that:
tpeak = (1 — v Bty (49)
Introducing the peak amplitude
Ipcak - I(tpoak)a (50)
the standard form of (46) is obtained as
v—1
t t
1) = Tpese N(v) (1 - _) (_)
lox lox
t
X exp {—u (— — 1>} H(t)
t‘Ox
withev > 1 (51)
where
1 v—1
o 1/2 12
Nwy=v (1 — Vl/Z) exp(—v7/=).  (52)
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Power Exp Monocycle Pulse

0.5 v =16

I(t)/ Tpeak

-1 0 1 3 4 5

2
t/tox

Fig. 5. Example of a monocycle pulse.

An example of a monocycle power exponential pulse is shown
in Fig. 5.

VII. ILLUSTRATIVE NUMERICAL RESULTS

In this section, we present some illustrative numerical results
for the aforementioned two types of pulse shapes of the feeding
electric current: the unipolar pulse of the power exponential type
and the monocycle pulse related to the first derivative of the
power exponential pulse. The governing electromagnetic pa-
rameters in the configuration are: the layer conductance ratio

GL

nL:—:GLZ

% (53)

where Y = (¢/p)'/? and Z =

tance time constant

(11/€)/2, and the layer admit-

Cr
= . 54
L G 54

Time snaps at certain locations and 2-D color density plots of the
field distribution in space at successive time instants are com-
puted.!

The generic time convolution integral in the representation of
the different wave constituents is of the form

['/T_Tl(t )(72—T2)1/2d H(t—T).

To account for the inverse square-root singularity in the inte-
grand at 7 = T, the following change of variable of integration
is carried out:

E@#) = (55)

=T+ (t—-T)u® for0 < u < 1. (56)
This transforms (55) into
E(t) = [2 (t—T)'? /1_0 It = T)(1 - w?)]
AT+ (=Tl 1 7). (57

“RT (- T/

A copy of the Matlab programs is available upon request from
jianglj@hku.hk.
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Incident E-field for Power Exponential Pulse

25 T -
P—— .\‘,/ctr=0;x ?/ctr=0
ol X I/CII_:().5,‘.\’3/(‘1'_:().5 |
x /et =1;x Jet =1.5
15 i
(=]
E GL/Y =10
=1 1
2 (CL/GL)/t: =05
\&: 0.5 1
SN
0 =
-0.5 1
_1 1 1 1 1 1
0 1 2 4 5 6

3
t/t,

Fig. 6. Incident E-field when the feeding electric current pulse is a power ex-
ponential pulse.

Reflected E-field for Power Exponential Pulse

05 1
- —
0 f
E x /et =0;
- x /et =0
» Ea
8 05 x Jet =0.5; [|
& x}/cr’?(). 5
£e -1t X /cr’.=1; i
xj/crf 15
151t GL/Y =10 |
(CL/GL)/t: =05
-2 i i i i i
0 1 2 3 4 5 6

t/t.

Fig. 7. Reflected E-field when the feeding electric current pulse is a power
exponential pulse.

Actually, Ei2($1,$37 t) admits a closed-form expression,
whereas for E%(#1,73,t) and FE(z1,73,.1), we use this
method when calculating G* (1, X3, ¢) and G*(%1, X§,1).

The numerical results of Ei(zy,x3,t), E5(x1,23,1) and
EY(zy,73,1) are computed using the proposed method and
plotted. The first scenario computed uses the parameters
Gr/Y = 10,7,/t, = 0.5 and 71./tox = 0.5. Fy is a con-
stant. Figs. 68 are the resulting E-field time snaps at three
specified locations corresponding to the power exponential
pulse. The line source is located at (0,0, 1)ct,. Fig. 6 shows
the incident pulsed field at (0, 0,07 )ct,, (0.5,0,0.5)ct, and
(1,0,1.5)ct,. The dimensionless values of 1 /z}, equal 1, 1,
and 2/3. Fig. 7 shows the reflected field at these three positions
(z1/2% =1,1,2/3). The power exponential pulse is obviously
delayed and inverted in phase through the reflection on the thin
highly conductive layer. Oscillations brought by G*(z:1, X}, 1)
are overwhelmed by the attenuation. This case also occurs in
other figures related to reflected E-field and transmitted E-field
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Transmitted E-field for Power Exponential Pulse

0.3 . :
x /et =0;x Jct =0
SR ST
0.25 | x /et =0.5:x /et =—0.5
- X I/cr,_= 1 ,‘X/CII_: =1
02}

(CL/Gpr)/t: =05

-0.05

t/t,

Fig. 8. Transmitted E-field when the feeding electric current pulse is a power
exponential pulse.

Incident E-field for Monocycle Pulse

xI/ctu‘_=(),'xj/ctﬂ'\_:()

x /et =0.5;x /et =0.5|]
I ox 3 0x

X I/ct 5. 1 ;x}/ct T 1.5

-1L

%‘(‘rlvx:ivt)/EO
o

=2 |
(CL/GL)/tox =05
3L i
-4 i
0 1 2 3 4 5 6
t/ tox

Fig. 9. Incident E-field when the feeding electric current pulse is a monocycle
pulse.

(Figs. 8, 10—12 and 15-16). Fig. 8 shows the transmitted waves
versus the time at three positions of the other side of the object
layer: (0,0,07 )ct,, (0.5,0,—0.5)ct,, and (1,0, —1)ct,. The
dimensionless values of 51 /2% are equal —1, —1 and —1. Only
a small portion of the field passes through the thin layer due to
the high contrast and conductivity. Figs. 9-11 are the E-field
time snaps corresponding to the monocycle pulse for the same
thin layer. The position of the line source is (0,0, 1)ctox.
Fig. 12 is used to verify the boundary condition. We first
draw the incident field, reflected field, and transmitted field at
location (0, 0, 0)cto, . We expect the continuity condition of the
E-field to hold at 35 = 0. Hence, the subtraction of the total
E-field from both sides shall be zero, which means a flat line at
0. Fig. 12 demonstrates the validity of this property. Hence, it
can be seen that the proposed method can reasonably predict
the reflected wave and transmitted wave.

We also plot the figures of the field distribution in space at
successive time instants for reflected wave and transmitted wave
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Reflected E-field for Monocycle Pulse

3 r
\'ljcfa‘_:O
X C’ax—()
2 —05-
.\'l/crﬂx:045,
X j/ct(“‘_—()‘ 5
Lﬂo 1 X /cta‘_il;
~ ‘ "’3/Cr,1,“1‘5
-~
A \
g o —
o)
Al
_1 o
Gr/Y =10
_2 L 4
(CL/GpL)/tox =0.5
-3 i i i i i
0 1 2 3 4 5 6
t/tox

Fig. 10. Reflected E-field when the feeding electric current pulse is a mono-
cycle pulse.

Transmitted E-field for Monocycle Pulse

0.2
x I/ct ()Xi();
015} x ety =0
xl/crm=0.5;
0.1} .\’j/cfox=*0.5
(= x /et =1;
= I
~ 0.05 + X}/C’nx— Z
-~
g o —
e /
8
S« —0.05 / 4
Gr/Y =10
-0.1F 1
(CL/GL)/tox=0.5
-0.15
_02 1 1 1 1 1

t/tox

Fig. 11. Transmitted E-field when the feeding electric current pulse is a mono-
cycle pulse.

(Figs. 13 and 14). The feeding electric current pulse is the mono-
cycle pulse.

In the second case, we consider a 30-um-thick copper layer
using the same method to obtain the incident wave, reflected
wave, and transmitted wave. This type of copper layer is fre-
quently used for printed-circuit boards (PCBs). The feeding
electric current pulse is the monocycle pulse. The reflected and
transmitted figures are given in Figs. 15 and 16 since the incident
figure is the same as the aforementioned one. Comparing Figs. 15
and 16 with Figs. 10 and 11, we can see that the transmitted wave
is much smaller because the high contrast layer is much thicker
in this second case. To verify this method, we now calculate the
generalized transmission coefficient of a three-layer medium.
The thin sheet is located in the middle. The generalized transmis-
sion coefficient at the lower surface of the sheet in the frequency
domain is

T2

ikadg
1 — R271R273621k2d0

Tia= (58)

Tg’g €
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Verify the values of Ei,E5,E} at the position(0,0)
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Fig. 12. Verifying the boundary condition when the feeding electric current
pulse is a monocycle pulse.
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Fig. 13. Reflected E-field density plot when the feeding electric current pulse
is a monocycle pulse.
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Fig. 14. Transmitted E-field density plot when the feeding electric current pulse
is a monocycle pulse.

Here, T} » and T5 5 are transmission coefficients at the interfaces
from medium 1 (air) to medium 2 (thin sheet) and from medium
2 to medium 3 (air), respectively. ko is the wave number in
medium 2. Fig. 17 shows the magnitude of Ty s corresponding
to the first scenario, that is, Gp/Y = 10 and 7, /tox = 0.5.
The observation point in the frequency domain is 100 MHz
(tox = 1* 107 %s). Fig. 18 gives the result of Tl,S when the
middle layer is copper. In both figures, we can find that the trans-
mitted wave of the incident wave matches well with our results
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Reflected E-field for Monocycle Pulse
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Fig. 15. Reflected E-field for the copper sheet when the feeding electric current
pulse is a monocycle pulse.
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Fig. 16. Transmitted E-field for the copper sheet when the feeding electric cur-
rent pulse is a monocycle pulse.

using the proposed method if we compare the value of the trans-
mission coefficient at the observation point with the ratio of the
maximum of the transmitted wave over the maximum of the in-
cident wave. In addition, we use a popular commercial tool for
cross checking, in which the plane wave is employed as the port
excitation. Fig. 19 is the simulation result using the commercial
tool for the first case. From the figure, we can find that the ratio
is close to the generalized transmission coefficient and our nu-
merical result. This means that our setup for the model in the
commercial tool is correct. An explicit merit of our method is
high efficiency since it almost took 36 h to obtain the transient
results if the commercial tool is used. We also use this tool to
simulate the copper case. Unfortunately, it fails. The time-con-
suming drawback and the failure for a high-contrast thin layer
of the commercial tool, on the other hand, set off the value of
our method.
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Fig. 17. Generalized transmission coefficient for the monocycle pulse, when
parameters are set as 7. /Y = 10 and 7. /tq. = 0.5.
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Fig. 18. Generalized transmission coefficient for the monocycle pulse, when
parameters are set as G /Y = 6.74 = 10° and 7. /tox = 0.5 (i.e., the copper
case).
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Fig. 19. Simulation results from the commercial tool for the monocycle pulse,
when parameters are set as G, /Y = 10 and 71, /tox = 0.5.
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VIII. CONCLUSION

Via an extension of the Cagniard—de Hoop method for an-
alyzing the pulsed-field behavior in layered configurations,
closed-form analytic time-domain expressions have been de-
rived for the EM-field constituents that are generated by a pulsed
line source of electric current in the presence of a thin, highly con-
trasting layer with dielectric and conductive properties in a 2-D
model setting. It provides a novel solution for the field computa-
tion of line sources on top of the thin conductive layers frequently
encountered in integrated-circuit and printed-circuit-board de-
signs. Numerical results based on the field expressions obtained
can serve as an indication as to the possibilities of applying
the pertaining thin-sheet (approximate) boundary conditions in
codes for computational electromagnetics.
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