146 research outputs found
The regulation of sequence specific NF-kB DNA binding and transcription by IKKβ phosphorylation of NF-kB p50 at serine 80
peer-reviewedPhosphorylation of the NF-kB transcription factor is an important regulatory mechanism for the control of transcription. Here we identify serine 80 (S80) as a phosphorylation site on the p50 subunit of NF-kB, and IKKβ as a p50 kinase. Transcriptomic analysis of cells expressing a p50 S80A mutant reveals a critical role for S80 in selectively regulating
the TNF inducible expression of a subset of NF-kB target genes including pro-inflammatory cytokines and chemokines. S80 phosphorylation regulates the binding of p50 to NF-kB binding ( B) sites in a sequence specific manner. Specifically, phosphorylation of S80 reduces the binding of p50 at B sites with an adenine at the −1 position. Our analyses demonstrate that p50 S80 phosphorylation predominantly regulates transcription through the p50:p65 heterodimer, where S80 phosphorylation acts in trans to limit the NF- kB mediated transcription of pro-inflammatory genes. The regulation of a functional class of pro-inflammatory genes by the interaction of S80 phosphorylated p50 with a specific
kB sequence describes a novel mechanism for the control of cytokine-induced transcriptional responses
Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells
MALT1 channels proximal T-cell receptor (TCR) signalling to downstream
signalling pathways. With MALT1A and MALT1B two conserved splice variants
exist and we demonstrate here that MALT1 alternative splicing supports optimal
T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of
TRAF6, which augments MALT1 scaffolding function, but not protease activity.
Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is
induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7
inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and
activation, downregulation of hnRNP U enhances MALT1A expression and T-cell
activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding
to enhance downstream signalling and to promote optimal T-cell activation
Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation
Post-transcriptional gene regulation in T cells is dynamic and complex as targeted transcripts respond to various factors. This is evident for the Icos mRNA encoding an essential costimulatory receptor that is regulated by several RNA-binding proteins (RBP), including Roquin-1 and Roquin-2. Here, we identify a core RBPome of 798 mouse and 801 human T cell proteins by utilizing global RNA interactome capture (RNA-IC) and orthogonal organic phase separation (OOPS). The RBPome includes Stat1, Stat4 and Vav1 proteins suggesting unexpected functions for these transcription factors and signal transducers. Based on proximity to Roquin-1, we select \~50 RBPs for testing coregulation of Roquin-1/2 targets by induced expression in wild-type or Roquin-1/2-deficient T cells. Besides Roquin-independent contributions from Rbms1 and Cpeb4 we also show Roquin-1/2-dependent and target-specific coregulation of Icos by Celf1 and Igf2bp3. Connecting the cellular RBPome in a post-transcriptional context, we find contributions from multiple RBPs to the prototypic regulation of mRNA targets by individual trans-acting factors
Roquin Paralogs 1 and 2 Redundantly Repress the Icos and Ox40 Costimulator mRNAs and Control Follicular Helper T Cell Differentiation
SummaryThe Roquin-1 protein binds to messenger RNAs (mRNAs) and regulates gene expression posttranscriptionally. A single point mutation in Roquin-1, but not gene ablation, increases follicular helper T (Tfh) cell numbers and causes lupus-like autoimmune disease in mice. In T cells, we did not identify a unique role for the much lower expressed paralog Roquin-2. However, combined ablation of both genes induced accumulation of T cells with an effector and follicular helper phenotype. We showed that Roquin-1 and Roquin-2 proteins redundantly repressed the mRNA of inducible costimulator (Icos) and identified the Ox40 costimulatory receptor as another shared mRNA target. Combined acute deletion increased Ox40 signaling, as well as Irf4 expression, and imposed Tfh differentiation on CD4+ T cells. These data imply that both proteins maintain tolerance by preventing inappropriate T cell activation and Tfh cell differentiation, and that Roquin-2 compensates in the absence of Roquin-1, but not in the presence of its mutated form
Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells
The transcription factor Foxp3 is essential for optimal regulatory T (T reg) cell development and function. Here, we show that CD4+ T cells from Cbl-b RING finger mutant knockin or Cbl-b–deficient mice show impaired TGF-β–induced Foxp3 expression. These T cells display augmented Foxo3a phosphorylation, but normal TGF-β signaling. Expression of Foxo3a rescues Foxp3 expression in Cbl-b–deficient T cells, and Foxo3a deficiency results in defective TGF-β–driven Foxp3 induction. A Foxo3a-binding motif is present in a proximal region of the Foxp3 promoter, and is required for Foxo3a association. Foxo1 exerts similar effects as Foxo3a on Foxp3 expression. This study reveals that Foxo factors promote transcription of the Foxp3 gene in induced T reg cells, and thus provides new mechanistic insight into Foxo-mediated T cell regulation
Utilization of IκB–EGFP Chimeric Gene as an Indicator to Identify Microbial Metabolites with NF-κB Inhibitor Activity
NF-κB regulates several important expressions, such as cytokine release, anti-apoptosis, adhesion molecule expression, and cell cycle processing. Several NF-κB inhibitors have been discovered as an anti-tumor or anti-inflammatory drug. The activity of NF-κB transcription factor is negatively regulated by IκB binding. In this study, IκB assay system was established and IκB–EGFP fusion protein was used as an indicator to monitor the effects of substances on the IκB degradation. The results indicated that the chosen hydroquinone could inhibit the IκB degradation and cause the cell de-attachment from the bottom of culture plate. In addition, this system could also monitor the IκB degradation of microbial metabolite of natural mixtures of propolis. Thus, the IκB assay system may be a good system for drug discovery related to microbial metabolite
Identification of Genes that Elicit Disuse Muscle Atrophy via the Transcription Factors p50 and Bcl-3
Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1−/− and Bcl-3−/− mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse
Activation of transcription factors by extracellular nucleotides in immune and related cell types
Extracellular nucleotides, acting through P2 receptors, can regulate gene expression via intracellular signaling pathways that control the activity of transcription factors. Relatively little is known about the activation of transcription factors by nucleotides in immune cells. The NF-κB family of transcription factors is critical for many immune and inflammatory responses. Nucleotides released from damaged or stressed cells can act alone through certain P2 receptors to alter NF-κB activity or they can enhance responses induced by pathogen-associated molecules such as LPS. Nucleotides have also been shown to regulate the activity of other transcription factors (AP-1, NFAT, CREB and STAT) in immune and related cell types. Here, we provide an overview of transcription factors shown to be activated by nucleotides in immune cells, and describe what is known about their mechanisms of activation and potential functions. Furthermore, we propose areas for future work in this new and expanding field
Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems
We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts
- …