153 research outputs found

    A systematic survey in Arabidopsis thaliana of transcription factors that modulate circadian parameters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant circadian systems regulate various biological processes in harmony with daily environmental changes. In <it>Arabidopsis thaliana</it>, the underlying clock mechanism is comprised of multiple integrated transcriptional feedbacks, which collectively lead to global patterns of rhythmic gene expression. The transcriptional networks are essential within the clock itself and in its output pathway.</p> <p>Results</p> <p>Here, to expand understanding of transcriptional networks within and associated to the clock, we performed both an <it>in silico </it>analysis of transcript rhythmicity of transcription factor genes, and a pilot assessment of functional phenomics on the <it>MYB</it>, <it>bHLH</it>, and <it>bZIP </it>families. In our <it>in silico </it>analysis, we defined which members of these families express a circadian waveform of transcript abundance. Up to 20% of these families were over-represented as clock-controlled genes. To detect members that contribute to proper oscillator function, we systematically measured rhythmic growth <it>via </it>an imaging system in hundreds of misexpression lines targeting members of the transcription-factor families. Three transcription factors were found that conferred aberrant circadian rhythms when misexpressed: <it>MYB3R2</it>, <it>bHLH69</it>, and <it>bHLH92</it>.</p> <p>Conclusion</p> <p>Transcript abundance of many transcription factors in Arabidopsis oscillates in a circadian manner. Further, a developed pipeline assessed phenotypic contribution of a panel of transcriptional regulators in the circadian system.</p

    Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin

    Get PDF
    BACKGROUND: The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of Anopheles arabiensis was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults. METHODS: For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a (60)Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated. RESULTS: ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively CONCLUSION: The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing

    An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    Full text link
    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end‐members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end‐member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end‐member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.Key Points:Open source BMC model determines source contributions in Earth surface systemsEffectively applied to stable and radiogenic isotope systems in various settingsModel able to encompass end‐member uncertainties and multiple isotopic systemsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111937/1/ggge20708.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111937/2/ggge20708-sup-0001-2014GC005683-ts01.pd

    Control of Flowering in Strawberries

    Get PDF
    Strawberries (Fragaria sp.) are small perennial plants capable of both sexual reproduction through seeds and clonal reproduction via runners. Because vegetative and generative developmental programs are tightly connected, the control of flowering is presented here in the context of the yearly growth cycle. The rosette crown of strawberry consists of a stem with short internodes produced from the apical meristem. Each node harbors one trifoliate leaf and an axillary bud. The fate of axillary buds is dictated by environmental conditions; high temperatures and long days (LDs) promote axillary bud development into runners, whereas cool temperature and short days (SDs) favor the formation of branch crowns. SDs and cool temperature also promote flowering; under these conditions, the main shoot apical meristem is converted into a terminal inflorescence, and vegetative growth is continued from the uppermost axillary branch crown. The environmental factors that regulate vegetative and generative development in strawberries have been reasonably well characterized and are reviewed in the first two chapters. The genetic basis of the physiological responses in strawberries is much less clear. To provide a point of reference for the flowering pathways described in strawberries so far, a short review on the molecular mechanisms controlling flowering in the model plant Arabidopsis is given. The last two chapters will then describe the current knowledge on the molecular mechanisms controlling the physiological responses in strawberries.Peer reviewe

    Resistance of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis to nitric oxide correlates with disease severity in Tegumentary Leishmaniasis

    Get PDF
    BACKGROUND: Nitric oxide (NO(•)) plays a pivotal role as a leishmanicidal agent in mouse macrophages. NO(• )resistant Escherichia coli and Mycobacterium tuberculosis have been associated with a severe outcome of these diseases. METHODS: In this study we evaluated the in vitro toxicity of nitric oxide for the promastigote stages of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis parasites, and the infectivity of the amastigote stage for human macrophages. Parasites were isolated from patients with cutaneous, mucosal or disseminated leishmaniasis, and NO(• )resistance was correlated with clinical presentation. RESULTS: Seventeen isolates of L. (L.) amazonensis or L. (V.) braziliensis promastigotes were killed by up to 8 mM of more of NaNO(2 )(pH 5.0) and therefore were defined as nitric oxide-susceptible. In contrast, eleven isolates that survived exposure to 16 mM NaNO(2 )were defined as nitric oxide-resistant. Patients infected with nitric oxide-resistant Leishmania had significantly larger lesions than patients infected with nitric oxide-susceptible isolates. Furthermore, nitric oxide-resistant L. (L.) amazonensis and L. (V.) braziliensis multiplied significantly better in human macrophages than nitric oxide-susceptible isolates. CONCLUSION: These data suggest that nitric oxide-resistance of Leishmania isolates confers a survival benefit for the parasites inside the macrophage, and possibly exacerbates the clinical course of human leishmaniasis

    Pneumocystis murina colonization in immunocompetent surfactant protein A deficient mice following environmental exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pneumocystis spp</it>. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. <it>Pneumocystis </it>colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to <it>Pneumocystis</it>.</p> <p>Methods</p> <p>To analyze the role of SP-A in protecting the immunocompetent host from <it>Pneumocystis </it>colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to <it>P. murina </it>colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA).</p> <p>Results</p> <p>Detection of <it>P. murina </it>specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to <it>P. murina </it>within the animal facility. However, P. <it>murina </it>mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8–10 weeks and declined to undetectable levels by 16–18 weeks. When the mice were immunosuppressed, <it>P. murina </it>cyst forms were also only detected in KO mice. <it>P. murina </it>mRNA was detected in <it>SCID </it>mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared.</p> <p>Conclusion</p> <p>These data support an important role for SP-A in protecting the immunocompetent host from <it>P. murina </it>colonization, and provide a model to study <it>Pneumocystis </it>colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to <it>P. murina </it>even when housed under barrier conditions.</p

    Genetic Analyses of Interactions among Gibberellin, Abscisic Acid, and Brassinosteroids in the Control of Flowering Time in Arabidopsis thaliana

    Get PDF
    Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs) is the most documented. Abscisic acid (ABA) has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs) has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response.We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated.Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action

    The alpha-kinase family: an exceptional branch on the protein kinase tree

    Get PDF
    The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer
    corecore