49 research outputs found

    Detection of protection benefits for predatory fishes depends on census methodology

    Get PDF
    Marine protected areas (MPAs) are used as fisheries management and conservation tools. Well-enforced no-take zones allow the rebuilding of natural populations of exploited species; however, there is still controversy on the role of buffer zones. The effectiveness of MPAs could be underestimated, as fish population assessments depend largely on traditional methodologies that have difficulties in detecting predatory fish because of their low abundances, their patchy distribution, and their reaction to the presence of divers. The performance of different census methods was compared in assessing the protection benefits for large predatory fishes under different protection levels (i.e. no-take and buffer zones) in five Mediterranean MPAs. Specifically, conventional strip transects (CSTs, 50 × 5 m2) and tracked roaming transects combined with distance sampling (TRT + DS, variable lengths) were compared, including a series of TRT-derived estimators with variable transect lengths and fixed widths of 20, 10, and 6 m (TRT20, TRT10, and TRT6, respectively). Additionally, the effectiveness of the MPAs studied and protection levels for conserving large predatory species was evaluated. Transects covering larger areas (i.e. TRT + DS and TRT20) allowed the detection of a greater number of species and yielded more accurate estimates of density and biomass than transects of narrower fixed widths, particularly the CSTs, which were associated with the lowest richness detection capability, accuracy, and precision. On average, both no-take zones and buffer zones appeared effective for the conservation of predatory fishes, indicating that multiple protection areas were ecologically effective. Differences between MPAs were also observed, however, probably arising from both local environmental and management factors. We suggest the implementation of methodologies with larger transects for the study of large predatory fish, combined with CSTs for the rest of the fish community, in order to avoid biases in predatory population assessments, which are key indicators of MPA effectiveness

    Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea

    Get PDF
    Sea cucumber fisheries are now occurring in most of the tropical areas of the world, having expanded from its origin in the central Indo-Pacific. Due to the overexploitation of these resources and the increasing demand from Asian countries, new target species from Mediterranean Sea and northeastern Atlantic Ocean are being caught. The fishery effects on biometry and genetic structure of two target species (Holothuria polii and H. tubulosa) from Turkey, were assessed. The heaviest and largest individuals of H. polii were found into the non-fishery area of Kusadasi, also showing the highest genetic diversity. Similar pattern was detected in H. tubulosa, but only the weight was significantly higher in the protected area. However, the observed differences on the fishery effects between species, could be explained considering the different percentage of catches (80% for H. polii and 20% for H. tubulosa)

    High interannual variability in connectivity and genetic pool of a temperate clingfish matches oceanographic transport predictions

    Get PDF
    Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrabida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long-and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations

    Early-life dispersal traits of coastal fishes: an extensive database combining observations and growth models

    Get PDF
    Early-life stages play a key role in the dynamics of bipartite life cycle marine fish populations. Difficult to monitor, observations of these stages are often scattered in space and time. While Mediterranean coastlines have often been surveyed, no effort has been made to assemble historical observations. Here we build an exhaustive compilation of dispersal traits for coastal fish species, considering in situ observations and growth models (; https://doi.org/10.17882/91148). Our database contains over 110 000 entries collected from 1993 to 2021 in various subregions. All observations are harmonized to provide information on dates and geolocations of both spawning and settlement, along with pelagic larval durations. When applicable, missing data and associated confidence intervals are reconstructed from dynamic energy budget theory. Statistical analyses allow traits' variability to be revisited and sampling biases to be revealed across taxa, space and time, hence providing recommendations for future studies and sampling. Comparison of observed and modelled entries provides suggestions to improve the feed of observations into models. Overall, this extensive database is a crucial step to investigate how marine fish populations respond to global changes across environmental gradients

    Nycthemeral and Monthly Occupation of the Fish Assemblage on a Sheltered Beach of Baía Norte, Florianópolis, Santa Catarina State, Brazil

    Get PDF
    Interpreting fish community records is challenging for several reasons, including the lack of past ichthyofauna data, the cyclical temporal variations in the community, and the methodology employed, which usually underestimates fish assemblages. The objective of this study was to describe short-scale and meso-scale (nycthemeral period and months, respectively) temporal variations in the ichthyofauna composition and structure of a sheltered beach of Baía Norte (Florianópolis, Santa Catarina state, Brazil), using a capéchade net. Samples were collected monthly for a period of 48 hours. During the period from December 2010 to November 2011, a total of 19,302 individuals belonging to 89 species and 39 families were captured. The number of individuals that were sampled during the day and/or night was dependent on the sampling month. On average, the daytime assemblage was more abundant and different in structure and composition than the nighttime assemblage. Of the eight species that had the highest Index of Relative Importance (%IRI), five had higher variations (ANOVA F) between the day and night than between the months. This finding reinforced the need for sampling during both the day and night. The capéchade net effectively captured demersal and pelagic individuals in a broad range of sizes
    corecore