2,110 research outputs found
Young adult-born neurons improve odor coding by mitral cells
New neurons are continuously generated in the adult brain through a process called adult neurogenesis. This form of plasticity has been correlated with numerous behavioral and cognitive phenomena, but it remains unclear if and how adult-born neurons (abNs) contribute to mature neural circuits. We established a highly specific and efficient experimental system to target abNs for causal manipulations. Using this system with chemogenetics and imaging, we found that abNs effectively sharpen mitral cells (MCs) tuning and improve their power to discriminate among odors. The effects on MCs responses peaked when abNs were young and decreased as they matured. To explain the mechanism of our observations, we simulated the olfactory bulb circuit by modelling the incorporation of abNs into the circuit. We show that higher excitability and broad input connectivity, two well-characterized features of young neurons, underlie their unique ability to boost circuit computation
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
The weak nucleon axial-vector form factor for quasi-elastic interactions is
determined using neutrino interaction data from the K2K Scintillating Fiber
detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of
which half are charged-current quasi-elastic interactions nu-mu n to mu- p
occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for
oxygen and assume the form factor is approximately a dipole with one parameter,
the axial vector mass M_A, and fit to the shape of the distribution of the
square of the momentum transfer from the nucleon to the nucleus. Our best fit
result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated
vector form factors from recent electron scattering experiments and a
discussion of the effects of the nucleon momentum on the shape of the fitted
distributions.Comment: 14 pages, 10 figures, 6 table
Measurement of the Branching Fraction for B- --> D0 K*-
We present a measurement of the branching fraction for the decay B- --> D0
K*- using a sample of approximately 86 million BBbar pairs collected by the
BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is
detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the
K*- through its decay to K0S pi-. We measure the branching fraction to be
B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid
Communications
Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass
energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with
the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum
we have obtained the products of branching fractions for the omega and phi
mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and
B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the
e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range
1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events
have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18
+/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.
Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays
We present measurements of the branching fractions for the three-body decays
B0 -> D(*)-/+ K0 pi^+/-B0 -> D(*)-/+ K*+/- using
a sample of approximately 88 million BBbar pairs collected by the BABAR
detector at the PEP-II asymmetric energy storage ring.
We measure:
B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4}
B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4}
From these measurements we determine the fractions of resonant events to be :
f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) =
0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction
We present evidence for the flavor-changing neutral current decay and a measurement of the branching fraction for the related
process , where is either an or
pair. These decays are highly suppressed in the Standard Model,
and they are sensitive to contributions from new particles in the intermediate
state. The data sample comprises
decays collected with the Babar detector at the PEP-II storage ring.
Averaging over isospin and lepton flavor, we obtain the branching
fractions and , where the
uncertainties are statistical and systematic, respectively. The significance of
the signal is over , while for it is .Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let
Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics
With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the
BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays
to ppbar. We measure a branching fraction Br(B+ --> p pbar
K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and
the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B
decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the
mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ -->
Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+
We report a search for the decays , , in a sample of 232
million decays to \BBb ~pairs collected with the \babar detector
at the PEP-II asymmetric-energy storage ring. We find no significant
signal and set upper bounds for the branching fractions: and at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R
Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4 fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
- …