54 research outputs found

    Maternal predator-exposure affects offspring size at birth but not telomere length in a live-bearing fish

    Get PDF
    The perception of predation risk could affect prey phenotype both within and between generations (via parental effects). The response to predation risk could involve modifications in physiology, morphology, and behavior and can ultimately affect long-term fitness. Among the possible modifications mediated by the exposure to predation risk, telomere length could be a proxy for investigating the response to predation risk both within and between generations, as telomeres can be significantly affected by environmental stress. Maternal exposure to the perception of predation risk can affect a variety of offspring traits but the effect on offspring telomere length has never been experimentally tested. Using a live-bearing fish, the guppy (Poecilia reticulata), we tested if the perceived risk of predation could affect the telomere length of adult females directly and that of their offspring with a balanced experimental setup that allowed us to control for both maternal and paternal contribution. We exposed female guppies to the perception of predation risk during gestation using a combination of both visual and chemical cues and we then measured female telomere length after the exposure period. Maternal effects mediated by the exposure to predation risk were measured on offspring telomere length and body size at birth. Contrary to our predictions, we did not find a significant effect of predation-exposure neither on female nor on offspring telomere length, but females exposed to predation risk produced smaller offspring at birth. We discuss the possible explanations for our findings and advocate for further research on telomere dynamics in ectotherms

    Analyses of rare collection samples as conservation tool for the last known Italian population of Graphoderus bilineatus (Insecta: Coleoptera)

    Get PDF
    Graphoderus bilineatus is a predacious diving beetle, widely distributed across Europe. Its poor dispersal ability and the fragmentation and deterioration of its habitats have been indicated as the major causes of decline. In several western European countries, the species is extinct, justifying its inclusion as "vulnerable" in the IUCN red list. Aiming for the conservation of the last known population of G. bilineatus in the northern Italian region of Emilia Romagna, at the lake Pratignano, we surveyed its genetic diversity at the mitochondrial COI gene and compared it to that of other European populations. Two fixed COI haplotypes were found in the Italian and Austrian populations, respectively. Both haplotypes were unique among the European populations surveyed, suggesting these populations suffered a bottleneck and geographic isolation. Populations in western Europe showed lower genetic diversity and higher degree of differentiation than eastern populations. The uniqueness of Pratignano haplotype makes it difficult to choose a source population from which to transfer animals for a possible restocking. Selection of the source population should be based mainly on ecological considerations, but at the same time ensuring a good genetic diversity to maximize the adaptive potential

    Experimental nest cooling reveals dramatic effects of heatwaves on reproduction in a Mediterranean bird of prey

    Get PDF
    Future climatic scenarios forecast increases in average temperatures as well as in the frequency, duration, and intensity of extreme events, such as heatwaves. Whereas behavioral adjustments can buffer direct physiological and fitness costs of exposure to excessive temperature in wild animals, these may prove more difficult during specific life stages when vagility is reduced (e.g., early developmental stages). By means of a nest cooling experiment, we tested the effects of extreme temperatures on different stages of reproduction in a cavity-nesting Mediterranean bird of prey, the lesser kestrel (Falco naumanni), facing a recent increase in the frequency of heatwaves during its breeding season. Nest temperature in a group of nest boxes placed on roof terraces was reduced by shading them from direct sunlight in 2 consecutive years (2021 and 2022). We then compared hatching failure, mortality, and nestling morphology between shaded and non-shaded (control) nest boxes. Nest temperature in control nest boxes was on average 3.9 degrees C higher than in shaded ones during heatwaves, that is, spells of extreme air temperature (>37 degrees C for =2 consecutive days) which hit the study area during the nestling-rearing phase in both years. Hatching failure markedly increased with increasing nest temperature, rising above 50% when maximum nest temperatures exceeded 44 degrees C. Nestlings from control nest boxes showed higher mortality during heatwaves (55% vs. 10% in shaded nest boxes) and those that survived further showed impaired morphological growth (body mass and skeletal size). Hence, heatwaves occurring during the breeding period can have both strong lethal and sublethal impacts on different components of avian reproduction, from egg hatching to nestling growth. More broadly, these findings suggest that the projected future increases of summer temperatures and heatwave frequency in the Mediterranean basin and elsewhere in temperate areas may threaten the local persistence of even relatively warm-adapted species

    A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    Get PDF
    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest

    Sequence variation and regulatory variation in acetylcholinesterase genes contribute to insecticide resistance in different populations of Leptinotarsa decemlineata

    Get PDF
    Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g., mutation profiles) and regulatory (e.g., the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos-methyl and carbaryl insecticides than Belchow beetles, despite a similar frequency of resistance-associated alleles (i.e., S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S and F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos-methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides

    Low parasitism rates in parthenogenetic bagworm moths do not support the parasitoid hypothesis for sex

    No full text
    The parasite hypothesis for sex is one of the many theories that have been suggested to solve the mystery of the widespread occurrence of sex despite its high short-term costs. It suggests that sexual lineages have an evolutionary advantage over parthenogens because they can frequently generate new genotypes that are temporarily less prone to coevolving parasites. In this study, we looked for further supporting evidence for the parasite hypothesis of sex in an attempt to understand the coexistence of sexual and parthenogenetic bagworm moths (Naryciinae). The bagworm moths and their parasitoids form one of the few natural host-parasite systems where sexual and parthenogenetic hosts are apparently not separated by ecological or geographical barriers. Furthermore, in support of the parasite hypothesis for sex, parthenogenetic presence is negatively correlated with parasitism rate. We specifically tested, by identifying the reproductive mode of the parasitized individuals, whether parasitoids preferentially attack the parthenogens in sites with both sexual and parthenogenetic forms, as predicted by the parasite hypothesis. We collected hosts from sites with different frequencies of parthenogenetic and sexual moths. A DNA barcoding approach was used to determine the reproductive mode of the parasitized hosts. Furthermore, we investigated whether differences in host and parasitoid phenology could provide an alternative explanation for the variation in parasitism rates between parthenogens and sexuals. Our results contradict the prediction of the parasite hypothesis because parthenogenetic bagworm moths were less parasitized than sexuals in sympatric sites. Our findings can be explained by differences in phenology between the parthenogenetic and sexual moths rather than genetic incompatibility between parthenogenetic hosts and parasitoids. The stable coexistence of sexual and parthenogenetic Naryciinae despite the many apparent costs of sex in this system remains a mystery. Our work adds to the list of studies were the assumptions of the parasite hypothesis for sex are not all met. © 2012 European Society For Evolutionary Biology

    Quantitative genetic approach for assessing invasiveness: geographic and genetic variation in life-history traits

    No full text
    Predicting the spread of invasive species is a challenge for modern ecology. Although many invasive species undergo genetic bottlenecks during introduction to new areas resulting in a loss of genetic diversity, successful invaders manage to flourish in novel environments either because of pre-adaptations or because important traits contain adaptive variation enabling rapid adaptation to changing conditions. To predict and understand invasion success, it is crucial to analyse these features. We assessed the potential of a well-known invader, the Colorado potato beetle (Leptinotarsa decemlineata), to expand north of its current range in Europe. A short growing season and harsh overwintering conditions are apparent limiting factors for this species' range. By rearing full-sib families from four geographically distinct populations (Russia, Estonia, Poland, Italy) at two fluctuating temperature regimes, we investigated (a) possible differences in survival, development time, and body size among populations and (b) the amount of adaptive variation within populations in these traits. All populations were able to complete their development in cooler conditions than in their current range. A significant genotype-environment interaction for development time and body size suggests the presence of adaptive genetic variation, indicating potential to adapt to cooler conditions. The northernmost population had the highest survival rates and fastest development times on both temperature regimes, suggesting pre-adaptation to cooler temperatures. Other populations had minor differences in development times. Interestingly, this species lacks the classical trade-off between body size and development time which could have contributed to its invasion potential. This study demonstrates the importance of considering both ecological and evolutionary aspects when assessing invasion risk

    The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations

    No full text
    The paradox of successful invading species is that they are likely to be genetically depauperate compared to their source population. This study on Colorado potato beetles is one of the few studies of the genetic consequences of continent-scale invasion in an insect pest. Understanding gene flow, population structure and the potential for rapid evolution in native and invasive populations offers insights both into the dynamics of small populations that become successful invaders and for their management as pests. We used this approach to investigate the invasion of the Colorado potato beetle (Leptinotarsa decemlineata) from North America to Europe. The beetles invaded Europe at the beginning of the 20th century and expanded almost throughout the continent in about 30 years. From the analysis of mitochondrial DNA (mtDNA) and amplified fragment length polymorphism (AFLP) markers, we found the highest genetic diversity in beetle populations from the central United States. The European populations clearly contained only a fraction of the genetic variability observed in North American populations. European populations show a significant reduction at nuclear markers (AFLPs) and are fixed for one mitochondrial haplotype, suggesting a single successful founder event. Despite the high vagility of the species and the reduction of genetic diversity in Europe, we found a similar, high level of population structure and low gene flow among populations on both continents. Founder events during range expansion, agricultural management with crop rotation, and selection due to insecticide applications are most likely the causes partitioning genetic diversity in this species

    Isolation of seven polymorphic microsatellites in Ophioblennius atlanticus atlanticus (Perciformes, Blenniidae)

    No full text
    We isolated and characterized seven polymorphic microsatellite loci of Ophioblennius atlanticus atlanticus (Valenciennes, 1836) using an optimized protocol to construct and screen a microsatellite-enriched genomic library. The analysis of variability was performed in 16 specimens from Faial Island (Azores, Portugal). The mean number of alleles was 8.71 +/- 2.43 and the level of expected heterozygosity ranged from 0.764 to 0.903. The total exclusionary probabilities using these loci for the first and the second parent were 0.985 and 0.998, respectively, suggesting that these microsatellites are a useful tool for large-scale parentage analysis
    • …
    corecore