159 research outputs found

    SimulCity: Planning Communications in Smart Cities

    Full text link
    [EN] Communication networks have become a critical element in the development of smart cities. The information flows generated by thousands of sensors and systems must be managed to assure the adequate guarantees of quality, availability, and security. This paper introduces the SimulCity tool, which assists in the design of a smart city's communications convergent network. SimulCity allows a flexible simulation of different scenarios where multiple heterogeneous sources of human type communications (HTCs) and machine type communications (MTCs) compete for limited bandwidth resources. SimulCity evaluates the impact of new services on the performance of a municipal communications network and, consequently, assists the modification of network values to optimize bandwidth and reduce costs. Several network characteristics can be easily configured in SimulCity, such as the definition of traffic sources, the parametrization of different network mechanisms, access admission control, quality of service (QoS), and traffic in the multiprotocol label switching (MPLS) network. SimulCity was used to simulate different projects in the smart city of Valencia (Spain). Specifically, SimulCity was used to study the impact on the Valencia City Council's communications network of several new services: the solid waste collection supervision, the street lighting management, the control of regulated parking areas, and the upgrade of voice and video communications systems of the city government buildings. The results obtained have allowed the analysis of the impact that these new services have on the existing network and to perform an adequate dimensioning of the future municipal communications network.This work was supported in part by the Spanish Government under Project TIN2013-47272-C2-1-R and Project TEC2015-71932-REDT, and in part by the ITACA Institute Ayudas 2019Rodríguez-Hernández, MA.; Gomez-Sacristan, Á.; Gomez-Cuadrado, D. (2019). SimulCity: Planning Communications in Smart Cities. IEEE Access. 7:46870-46884. https://doi.org/10.1109/ACCESS.2019.2909322S4687046884

    Numerical model of the inhomogeneous scattering by the human lens

    Get PDF
    We present in this work a numerical model for characterizing the scattering properties of the human lens. After analyzing the scattering properties of two main scattering particles actually described in the literature through FEM (finite element method) simulations, we have modified a Monte Carlo''s bulk scattering algorithm for computing ray scattering in non-sequential ray tracing. We have implemented this ray scattering algorithm in a layered model of the human lens in order to calculate the scattering properties of the whole lens. We have tested our algorithm by simulating the classic experiment carried out by Van der Berg et al for measuring "in vitro" the angular distribution of forward scattered light by the human lens. The results show the ability of our model to simulate accurately the scattering properties of the human lens. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function.

    Get PDF
    Adipose tissue dysfunction is an important determinant of obesity-associated, lipid-induced metabolic complications. Ceramides are well-known mediators of lipid-induced insulin resistance in peripheral organs such as muscle. DEGS1 is the desaturase catalyzing the last step in the main ceramide biosynthetic pathway. Functional suppression of DEGS1 activity results in substantial changes in ceramide species likely to affect fundamental biological functions such as oxidative stress, cell survival, and proliferation. Here, we show that degs1 expression is specifically decreased in the adipose tissue of obese patients and murine models of genetic and nutritional obesity. Moreover, loss-of-function experiments using pharmacological or genetic ablation of DEGS1 in preadipocytes prevented adipogenesis and decreased lipid accumulation. This was associated with elevated oxidative stress, cellular death, and blockage of the cell cycle. These effects were coupled with increased dihydroceramide content. Finally, we validated in vivo that pharmacological inhibition of DEGS1 impairs adipocyte differentiation. These data identify DEGS1 as a new potential target to restore adipose tissue function and prevent obesity-associated metabolic disturbances.This work was funded by Medical Research Council, MDU MRC, FP7- ETHERPATHS and the British Heart Foundation (BHF). We declare no conflict of interest.This is the accepted manuscript. The final version is available from ADA at http://diabetes.diabetesjournals.org/content/early/2014/10/22/db14-0359.abstract

    Effects of chemokines on proliferation and apoptosis of human mesangial cells

    Get PDF
    BACKGROUND: Proliferation and apoptosis of mesangial cells (MC) are important mechanisms during nephrogenesis, for the maintenance of glomerular homeostasis as well as in renal disease and glomerular regeneration. Expression of chemokines and chemokine receptors by intrinsic renal cells, e.g. SLC/CCL21 on podocytes and CCR7 on MC is suggested to play a pivotal role during these processes. Therefore the effect of selected chemokines on MC proliferation and apoptosis was studied. METHODS: Proliferation assays, cell death assays including cell cycle analysis, hoechst stain and measurement of caspase-3 activity were performed. RESULTS: A dose-dependent, mesangioproliferative effect of the chemokine SLC/CCL21, which is constitutively expressed on human podocytes was seen via activation of the chemokine receptor CCR7, which is constitutively expressed on MC. In addition, in cultured MC SLC/CCL21 had a protective effect on cell survival in Fas-mediated apoptosis. The CXCR3 ligands IP-10/CXCL10 and Mig/CXCL9 revealed a proproliferative effect but did not influence apoptosis of MC. Both the CCR1 ligand RANTES/CCL5 and the amino-terminally modified RANTES analogue Met-RANTES which blocks CCR1 signalling had no effect on proliferation and apoptosis. CONCLUSIONS: The different effects of chemokines and their respective receptors on proliferation and apoptosis of MC suggest highly regulated, novel biological functions of chemokine/chemokine receptor pairs in processes involved in renal inflammation, regeneration and glomerular homeostasis

    Evaluation of different bowel preparations for small bowel capsule endoscopy: a prospective, randomized, controlled study

    Get PDF
    To obtain an adequate view of the whole small intestine during capsule endoscopy (CE) a clear liquid diet and overnight fasting is recommended. However, intestinal content can hamper vision in spite of these measures. Our aim was to evaluate tolerance and degree of intestinal cleanliness during CE following three types of bowel preparation. PATIENTS AND METHODS: This was a prospective, multicenter, randomized, controlled study. Two-hundred ninety-one patients underwent one of the following preparations: 4 L of clear liquids (CL) (group A; 92 patients); 90 mL of aqueous sodium phosphate (group B; 89 patients); or 4 L of a polyethylene glycol electrolyte solution (group C; 92 patients). The degree of cleanliness of the small bowel was classified by blinded examiners according to four categories (excellent, good, fair or poor). The degree of patient satisfaction, gastric and small bowel transit times, and diagnostic yield were measured. RESULTS: The degree of cleanliness did not differ significantly between the groups (P = 0.496). Interobserver concordance was fair (k = 0.38). No significant differences were detected between the diagnostic yields of the CE (P = 0.601). Gastric transit time was 35.7 +/- 3.7 min (group A), 46.1 +/- 8.6 min (group B) and 34.6 +/- 5.0 min (group C) (P = 0.417). Small-intestinal transit time was 276.9 +/- 10.7 min (group A), 249.7 +/- 13.1 min (group B) and 245.6 +/- 11.6 min (group C) (P = 0.120). CL was the best tolerated preparation. Compliance with the bowel preparation regimen was lowest in group C (P = 0.008). CONCLUSIONS: A clear liquid diet and overnight fasting is sufficient to achieve an adequate level of cleanliness and is better tolerated by patients than other forms of preparation

    Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment

    Get PDF
    11 pages, 6 figures, 1 table.Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of 1phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKβ in carcinogenesis has been reported. Methodology/Principal Findings Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKβ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKβ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKβ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKβ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKβ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKβ. Conclusion/Significance This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKβ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.This work has been supported by grants to JCL from Comunidad de Madrid (GR-SAL-0821-2004), Ministerio de Ciencia e Innovación (SAF2008-03750, RD06/0020/0016), Fundación Mutua Madrileña, and by a grant to ARM from Fundación Mutua Madrileña.Peer reviewe

    Going Deeper: Metagenome of a Hadopelagic Microbial Community

    Get PDF
    The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above

    Assessing the Diversity and Specificity of Two Freshwater Viral Communities through Metagenomics

    Get PDF
    Transitions between saline and fresh waters have been shown to be infrequent for microorganisms. Based on host-specific interactions, the presence of specific clades among hosts suggests the existence of freshwater-specific viral clades. Yet, little is known about the composition and diversity of the temperate freshwater viral communities, and even if freshwater lakes and marine waters harbor distinct clades for particular viral sub-families, this distinction remains to be demonstrated on a community scale

    NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease

    Get PDF
    Extent: 14p.Background: Without appropriate cellular models the etiology of idiopathic Parkinson’s disease remains unknown. We recently reported a novel patient-derived cellular model generated from biopsies of the olfactory mucosa (termed olfactory neurosphere-derived (hONS) cells) which express functional and genetic differences in a disease-specific manner. Transcriptomic analysis of Patient and Control hONS cells identified the NRF2 transcription factor signalling pathway as the most differentially expressed in Parkinson’s disease. Results: We tested the robustness of our initial findings by including additional cell lines and confirmed that hONS cells from Patients had 20% reductions in reduced glutathione levels and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to cultures from healthy Control donors. We also confirmed that Patient hONS cells are in a state of oxidative stress due to higher production of H2O2 than Control cultures. siRNA-mediated ablation of NRF2 in Control donor cells decreased both total glutathione content and MTS metabolism to levels detected in cells from Parkinson’s Disease patients. Conversely, and more importantly, we showed that activation of the NRF2 pathway in Parkinson’s disease hONS cultures restored glutathione levels and MTS metabolism to Control levels. Paradoxically, transcriptomic analysis after NRF2 pathway activation revealed an increased number of differentially expressed mRNAs within the NRF2 pathway in L-SUL treated Patient-derived hONS cells compared to L-SUL treated Controls, even though their metabolism was restored to normal. We also identified differential expression of the PI3K/AKT signalling pathway, but only post-treatment. Conclusions: Our results confirmed NRF2 as a potential therapeutic target for Parkinson’s disease and provided the first demonstration that NRF2 function was inducible in Patient-derived cells from donors with uniquely varied genetic backgrounds. However, our results also demonstrated that the response of PD patient-derived cells was not co-ordinated in the same way as in Control cells. This may be an important factor when developing new therapeutics.Anthony L. Cook, Alejandra M. Vitale, Sugandha Ravishankar, Nicholas Matigian, Greg T. Sutherland, Jiangou Shan, Ratneswary Sutharsan, Chris Perry, Peter A. Silburn, George D. Mellick, Murray L. Whitelaw, Christine A. Wells, Alan Mackay-Sim and Stephen A. Woo

    Impact of chronic stress protocols in learning and memory in rodents: systematic review and meta-analysis

    Get PDF
    The idea that maladaptive stress impairs cognitive function has been a cornerstone of decades in basic and clinical research. However, disparate findings have reinforced the need to aggregate results from multiple sources in order to confirm the validity of such statement. In this work, a systematic review and meta-analyses were performed to aggregate results from rodent studies investigating the impact of chronic stress on learning and memory. Results obtained from the included studies revealed a significant effect of stress on global cognitive performance. In addition, stressed rodents presented worse consolidation of learned memories, although no significantly differences between groups at the acquisition phase were found. Despite the methodological heterogeneity across studies, these effects were independent of the type of stress, animals' strains or age. However, our findings suggest that stress yields a more detrimental effect on spatial navigation tests' performance. Surprisingly, the vast majority of the selected studies in this field did not report appropriate statistics and were excluded from the quantitative analysis. We have therefore purposed a set of guidelines termed PROBE (Preferred Reporting Orientations for Behavioral Experiments) to promote an adequate reporting of behavioral experiments.This work was funded by the European Commission (FP7) "SwitchBox" (Contract HEALTH-F2-2010-259772) project and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), and by Fundacao Calouste Gulbenkian (Portugal) (Contract grant number: P-139977; project "Better mental health during ageing based on temporal prediction of individual brain ageing trajectories (TEMPO)"). PSM is supported by an FCT fellowship grant, from the PhD-iHES program, with the reference PDE/BDE/113601/2015.info:eu-repo/semantics/publishedVersio
    corecore