55 research outputs found

    Theory of thin-walled rods

    Get PDF
    Starting with the Love equations for bending of extensible shells, "principal stress states" are sought for a thin-walled rod of arbitrary but open cross section. Principal stress states exclude those local states arising from end conditions which damp out with distance from the ends. It is found that for rods of intermediate length, long enough to avoid local bending at a support, and short enough that elementary torsion and bending are not the most significant stress states, four principal states exist. Three of these states are associated with the planar distribution of axial stress and are equivalent to the engineering theory of extension and bending of solid sections. The fourth state resembles that which has been called in the literature "bending stress due to torsional", except that cross sections are permitted to bend and the shear along the center line of the cross section is permitted to differ from zero

    Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories

    Get PDF
    Long-wave models obtained in the process of asymptotic homogenisation of structures with a characteristic length scale are known to be non-unique. The term non-uniqueness is used here in the sense that various homogenisation strategies may lead to distinct governing equations that usually, for a given order of the governing equation, approximate the original problem with the same asymptotic accuracy. A constructive procedure presented in this paper generates a class of asymptotically equivalent long-wave models from an original homogenised theory. The described non-uniqueness manifests itself in the occurrence of additional parameters characterising the model. A simple problem of long-wave propagation in a regular one-dimensional lattice structure is used to illustrate important criteria for selecting these parameters. The procedure is then applied to derive a class of continuum theories for a two-dimensional square array of particles. Applications to asymptotic structural theories are also discussed. In particular, we demonstrate how to improve the governing equation for the Rayleigh-Love rod and explain the reasons for the well-known numerical accuracy of the Mindlin plate theory

    Adhesive contact problems for a thin elastic layer : Asymptotic analysis and the JKR theory

    Get PDF
    Contact problems for a thin compressible elastic layer attached to a rigid support are studied. Assuming that the thickness of the layer is much less than the characteristic dimension of the contact area, a direct derivation of asymptotic relations for displacements and stress is presented. The proposed approach is compared with other published approaches. The cases are established when the leading-order approximation to the non-adhesive contact problems is equivalent to contact problem for a Winkler–Fuss elastic foundation. For this elastic foundation, the axisymmetric adhesive contact is studied in the framework of the Johnson–Kendall–Roberts (JKR) theory. The JKR approach has been generalized to the case of the punch shape being described by an arbitrary blunt axisymmetric indenter. Connections of the results obtained to problems of nanoindentation in the case that the indenter shape near the tip has some deviation from its nominal shape are discussed. For indenters whose shape is described by power-law functions, the explicit expressions are derived for the values of the pull-off force and for the corresponding critical contact radius

    Resolving system of equations and boundary conditions for a shell in the form of an oblique helicoid

    No full text

    Theory of Elastic Thin Shells

    No full text

    THERMOELASTIC DIFFERENTIAL EQUATIONS FOR SHELLS OF ARBITRARY SHAPE

    No full text
    • …
    corecore