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Abstract

Contact problems for a thin compressible elastic layer attached to a rigid support are studied.
Assuming that the thickness of the layer is much less than characteristic dimension of the contact area,
a direct derivation of asymptotic relations for displacements and stress is presented. The proposed
approach is compared with other published approaches. The cases are established when the leading
order approximation to the non-adhesive contact problems is equivalent to contact problem for a
Winkler-Fuss elastic foundation. For this elastic foundation, the axisymmetric adhesive contact is
studied in the framework of the JKR (Johnson, Kendall, and Roberts) theory. The JKR approach has
been generalized to the case of the punch shape being described by an arbitrary blunt axisymmetric
indenter. Connections of the results obtained to problems of nanoindentation in the case of the
indenter shape near the tip has some deviation from its nominal shape are discussed. For indenters
whose shape is described by power-law functions, the explicit expressions are derived for the values
of the pull-o� force and for the corresponding critical contact radius.

Keywords: thin elastic layer, asymptotics, JKR theory, adhesive contact, Winkler-Fuss foundation

1 Introduction

The original Hertz contact theory studied the problem of contact between two in�nite isotropic elastic
solids whose shapes are represented by two elliptic paraboloids. The contact problem was studied in
geometrically linear formulation as a mixed boundary value problem for an elastic isotropic half-space
loaded by a rigid elliptic paraboloid. However, the contact problems for layered or coated solids are
also very important for many practical applications. These problems were studied in a number of
papers using various assumptions that are additional to the assumptions of the Hertz formulation.
Here some popular approximate and asymptotic approaches to the problem for an elastic layer are
examined (see literature reviews in [1�3]). It is noted that some mathematically correct asymptotic
approaches are rather sophisticated. Currently one of the best asymptotic approachs to contact
problems for layered solids is the direct approach that has been recently developed by Argatov and
Mishuris (the AM approach) [3]. Here we show that the method of direct asymptotic integration or
the GKN method [4], that was successfuly applied in problems of theory of shells and plates, can be
also used in applications to layered solids. Using the GKN approach, a simple and clear asymptotic
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solution to the problem is derived in the case when the size of contact region is much greater than
the thickness of the elastic compressible layer. The expressions for displacements and stresses acting
within the layer are presented. We demonstrate that although the AM approach has clear similarities
with the GKN approach, the latter has some advantages.

Using the GKN method, a simple and clear asymptotic solution to the contact problem is derived
in the case when the size of contact region is much greater than the thickness of the elastic com-
pressible layer. The expressions for displacements and stresses acting within the layer are presented.
It is shown that if the layer is isotropic or transversely isotropic then the leading term asymptotic
approximation may be considered as a layer of springs (the Winkler-Fuss elastic foundation or the
Fuss-Winkler-Zimmermann foundation). We compare our approach based on the GKN method with
other approaches, including approaches used by Argatov and his co-authors [3, 5, 6].

Usually contact problems are considered without taking into account adhesive forces. Indeed,
adhesion between contacting bodies has usually a negligible e�ect on surface interactions at the
macro-scale, whereas it becomes increasingly signi�cant as the contact size decreases. Because mod-
ern materials science deals often with very thin coatings and nano-world is the `Sticky Universe' [7],
we consider here the main ideas of the mechanics of adhesive contact between two surfaces that are
attracted to each other by intermolecular forces, i.e. the solids can interact with each other even if
the external load is not applied. Here we need to use the notion of the speci�c work of adhesion (w)
that is equal to the energy needed to separate two dissimilar surfaces from contact to in�nity. This
is the crucial material parameter for application of theories of adhesive contact.

The modern theory of adhesive contact for elastic solids may be traced back to the pioneering
papers by Derjaguin [8] and Johnson [9] (see also a discussion by Kendall [7]). Sperling [10] derived
formulae for the force � displacement diagram for a sticky sphere using Derjaguin's results and a
rather sophisticated solution of the contact problems for a sphere obtained by Jung [11]. Later
Johnson et al. [12] presented independently the JKR (Johnson, Kendall and Roberts) approach to
the same problem. The JKR approach is mathematically more elegant than the Sperling one and
the former is applied to the Winkler-Fuss foundation in the present paper.

The classical JKR or JKRS (Johnson-Kendall-Roberts-Sperling) theory of adhesive contact pro-
poses methodologies to predict the adhesion force between spherical indenters (paraboloids of rev-
olution) [10, 12]. Recently it has been shown that the theory can be extended to arbitrary blunt
axisymmetric indenters and to materials having rotational symmetry like transversely isotropic or
homogeneously prestressed materials [13�15]. Similar approach is also valid for probing of stretched
two-dimensional (2D) membranes [16]. Here we use the leading order approximation for an elastic
isotropic or transversely isotropic layer considered as the Winkler-Fuss elastic foundation to solve the
adhesive contact problem for a rigid axisymmetric blunt indenter of arbitrary shape. The problem
is studied employing the main assumptions of the JKR theory of adhesive contact. The governing
equations of the JKR theory are formulated and transformed using the slope of the non-adhesive
force-displacement curve in general form, which simpli�es transformations and makes them clearer.
Because the shapes of non-ideal shaped indenters may be well approximated as monomial functions
of radius [17], the particular case of power-law shaped probes is studied in detail.

2 Preliminaries: Problem formulation and state-of-the-art re-

sults

The classic formulation of the Hertz-type contact problems was independently introduced by Hertz
(1882) and Boussinesq (1895) (see references in [15]). This formulation assumes that the shape of
the bodies and the compressing force P are given and molecular adhesion can be ignored. Hence,
the �elds of displacements and stresses appear in the solids only after the external load is applied.
In addition, it is assumed that the contact region is small in comparison with the main radii of
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curvature of contacting solids and, therefore the boundary value problem for contacting solids may
be formulated as a boundary value problem for an isotropic elastic half-space. Here we consider
action of a smooth, convex rigid indenter on an elastic layer.

2.1 Formulation of non-adhesive contact problem

Let us use both the Cartesian and cylindrical coordinate frames, namely x1 = x, x2 = y, x3 = z and
r, θ, z, where r =

√
x2 + y2 and x = r cos θ, y = r sin θ. Let us place the origin (O) of Cartesian

coordinates at the point of initial contact between the indenter and the layer. Let us direct the axis
of x3 along the normal to the layer towards the inside of the layer (see Fig. 1).

Usually the Hertz-type contact problems assume that a rigid indenter, for which the equation
of the surface is given by a function f , i.e., x3 = −f(x1, x2), f > 0, is pressed by the force P to
a boundary of the contacting solid. After the indenter contacts with the layer, the displacements
ui and stresses σij are generated. It is supposed that the shape of the indenter f and the external
parameter of the problem P are given and one has to �nd the bounded region G on the boundary
plane x3 = 0 of the layer at the points where the punch and the layer are in mutual contact, the
displacements ui, and the stresses σij. If the pressing force P is taken as the external parameter P
then one has to �nd the depth of indentation δ (the relative approach between the indenter and the
boundary) and the the contact region G. If δ is taken as P then P and G are the sought values.

The formulation of the original Hertz contact problem, i.e. the contact between two blunt elastic
solids, contains several assumptions (see e.g., [15,18]). These assumptions are accepted here, though
we do not assume that the contact region is an ellipse. In general case of Hertz type contact problems,
the boundary value problem may be formulated for a positive half-space. However, here we consider
an elastic isotropic layer of thickness h occupying the area 0 ≤ x3 ≤ h, bounded to a rigid half-space
x3 ≥ h assuming that the thickness of the layer h is small compared to the characteristic size a of
the contact region (see Fig. 1). Evidently, for an axisymmetric problem a is the radius of the contact
region. The indenter is blunt, hence the contact problem can be considered in a geometrically linear
formulation.

Figure 1: Problem formulation

Let us denote as a comma di�erentiation with respect to the associated spatial coordinate xj,
j = 1, 2, 3. The sought quantities must satisfy the following equations.

The equations of equilibrium
σi1,1 + σi2,2 + σi3,3 = 0. (1)

The constitutive relations for the linear elastic materials are represented by the Hooke's law. For
an isotropic solids, the equations can be written as

σij = λ δij (u1,1 + u2,2 + u3,3) + µ (ui,j + uj,i) , λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2)
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Here λ and µ are the Lamé constants, E and ν are the Young modulus and Poisson's ratio, respec-
tively, ui are components of the displacement �eld, and δij is the Kronecker delta.

The boundary conditions should describe the problem within and out the contact region G,
and conditions describing interactions between the layer and the support. Because the problem is
frictionless, we have

σ3i(x1, x2, 0) = 0, (x1, x2) ∈ R2 i = 1, 2. (3)

The contact region G is de�ned as an open region such that if x ∈ G then the gap (u3 − g) between
the punch and the half-space is equal to zero and surface stresses are non-positive, while outside the
contact region, i.e. for x ∈ R2 \G, the gap is positive and the stresses are equal to zero. Hence, the
boundary conditions that describe the action of an indenter on the layer within the contact region
G and outside the region (R2 \G) can be written as

u3(x1, x2, 0) = g(x1, x2), σ33(x1, x2, 0) ≤ 0, (x1, x2) ∈ G,
u3(x1, x2, 0) > g(x1, x2), σ3i(x1, x2, 0) = 0, (x1, x2) ∈ R2 \G. (4)

For the general case of the problem of vertical frictionless pressing, we have

g(x) = δ − f(x1, x2) = δ − ϕ
(x1
a
,
x2
a

)
, f(x1, x2) = ϕ

(x1
a
,
x2
a

)
. (5)

If the layer is bonded to the support then the interactions between the layer and the support can be
written as

u1(x1, x2, h) = u2(x1, x2, h) = u3(x1, x2, h) = 0. (6)

In addition, there is the integral condition∫
R2

σ33(x1, x2, 0)dx1dx2 = −P. (7)

The above formulation is also valid for transversely isotropic linear or linearized materials having
rotational isotropy of their mechanical properties. For such materials, one should change the form
of the operator of constitutive relations, i.e. to change (2).

2.2 Approximate and asymptotic solutions for non-adhesive problems

The problems of contact between a rigid punch and an elastic layer attracted attentions of many
authors. These approaches to these problems with and without adhesion may be quite roughly divided
in two groups: (i) approximate solutions and (ii) asymptotic solutions to the contact problems. Here
we present a brief review of main papers in the groups. However, it is di�cult to split the papers
devoted to elastic foundation models [19, 20] and the papers devoted to an elastic layer. Indeed, it
has been known for a long time that the simplest approximation of the contact problem for a punch
and a thin elastic layer (thickness is much less than characteristic dimension of the contact area)
can be reduced to a contact problem between the punch and a Winkler-Fuss elastic foundation with
sti�ness coe�cient K. Many authors repeatedly obtained this result using di�erent approaches (see,
e.g. [1�3] and references therein).

The Winkler-Fuss elastic foundation can be imagined as a spring layer of thickness h, which rests
on a rigid base x3 > h. There is no interaction between the springs, i.e., shear between adjacent
springs is ignored. Hence, u1 = u2 = 0 at any point of the foundation, i.e. the displacement vector
u ≡ u3. The stresses are σij = δi3δ3jσij. The contact pressure p(x1, x2) = −σ33(x1, x2, 0) and the
corresponding component of the strain tensor ε33 at any point depend only on the displacement at
the point, hence they can be calculated as

ε33(x1, x2, 0) = −u3(x1, x2, 0)/h;

σ33(x1, x2, 0) = −Ku3(x1, x2, 0),
(8)
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where K is the elastic modulus of the foundation.
Because the depth of indentation δ is taken as the external parameter of the contact problem,

the load P and the contact region G are unknown. It follows from (8) and (7) that the compressing
force is

P (δ) = KV (δ), (9)

where V (δ) is the volume of the body under the cross�section of height z = δ. The contact problem
for Winkler foundation is discussed further in the present paper.

One of the �rst to introduce this structural model were Winkler [21] and Zimmermann [22].
The model is also known as the spring bed mattress elastic foundation [18]. The foundation was
considered in a number of papers and books (see, e.g., [18, 19]) because the simplicity of this model
makes it very helpful for modelling various engineering problems.

The foundation was used to model contact problems for rough surfaces; it was shown that if the
surface roughness is represented by a linear or non-linear Winkler-Fuss foundation and the foundation
is attached to a linear elastic half-space then the problem of contact between a rigid indenter and
the rough solid may be reduced to Hammerstein-type integral equations that in turn can be solved
numerically [23, 24]. The foundation was also used to estimate validness of some fractal ideas using
three di�erent models of fractal surfaces: the Cantor-Borodich pro�le [25], the hierarchical multilevel
Borodich-Onishchenko pro�le [26] and indenters whose pro�les described by parametric-homogeneous
(PH) function [27]. The PH functions were introduced by Borodich and they are discussed in detail
in several papers [28,29]. Recently the foundation was employed to model adhesive contact between
non-smooth surfaces whose roughness statistics is described by a Gaussian distribution [30]. It will
be discussed later that the contact problem for an isotropic elastic coating bonded to a substrate in
the leading term of asymptotic expansion reduces to a problem of contact for a Winkler-Fuss spring
layer whose sti�ness is (see, e.g. [1, 31,32])

K =
E (1− ν)

h (1 + ν) (1− 2ν)
(10)

where E and ν denote the elastic modulus and Poisson's ratio of the layer respectively.
In his famous book Johnson [18] examined the indentation by a rigid frictionless cylinder (the

plane-strain conditions of line contact) of an elastic layer which is supported on a rigid plane surface
in both bonded and unbonded formulations. He mentioned both the integral form of a solution to the
problem and some asymptotic approaches to the problem, e.g. [33]. Then he noted that in the limit
when ε = h/a < 1, the state of a�airs can be analysed in an elementary way by assuming that the
deformation through the layer is homogeneous, i.e. plane sections remain plane after compression,
so that the stress is uniform through the thickness.

Mathematically Johnson's model is equivalent to the Winkler-Fuss model with K de�ned by (10).
Ja�ar [34] applied the Johnson approach to problems of axisymmetric contacts involving thin layers
bonded and unbonded to a rigid foundation and indented by a frictionless rigid sphere.

Approximate solutions to axisymmetric contact problems for an elastic coating bonded to rigid
substrate were considered by many authors (see, e.g. [35, 36]). Among computational methods, the
Finite Element Method is quite often used to model contact problems. Some authors engage �nite
elements to study adhesive contact problems (e.g., [37�39]). However, in the present paper we deal
with analytical approaches and will not consider the papers devoted to numerical simulations.

One of the analytical approaches most commonly used to study contact problems is the asymp-
totic approach. The asymptotic expansions in the problems under consideration may use various
parameters: (i) the parameter ε = h/a is small; (ii) ε = h/a is large; and (iii) for transversely
isotropic materials ε = E1/E2 where E1 and E2 are the elastic moduli of the material along the
layer and in transverse direction respectively (see, e.g. [40]). Many books and papers are devoted to
asymptotic approaches to these problems see e.g. [1�3]. Here we are concentrated mainly on the case
when ε = h/a is small.
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It is well known [23, 24, 29, 41�47] that the class of mixed boundary value problems (with free
(unknown) boundary between the di�erent types of boundary conditions) for a thin layer can be
formulated using integral equations relating the unknowns: contact pressure p(x1, x2), contact area G
and its boundary ∂G, the approach of contacting bodies δ (in case the applied force P is known). We
agree with Johnson's remark (see page 138 in [18]) that the integrand in integral formulation equation
for contact problem of the layer has the awkward form and this has led to serious di�culties in the
analysis of contact stresses in strips and layers. Nevertheless the asymptotic approaches were mainly
developed for the integral equation or equations of similar structure (see, e.g. [1, 3, 5, 6, 31, 32,48]).

Aghalovyan [2] has developed an alternative asymptotic approach to the elasticity equations of
anisotropic plates and shells in both 2D and 3D formulations. In isotropic limit his calculations give
the known expression of K for plane strain (10) and

KPS =
E

h (1− ν2)
(11)

for plane stress case (see page 76 in [2]). In addition, Aghalovyan derives sti�ness of a multilayered
foundation by addition of compliances of individual Winkler-Fuss-type layers in the following way

KM =

(
N∑
j=1

1

Kj

)−1
, (12)

where KM is the resulting sti�ness coe�cient of the multilayered structure, Kj individual sti�ness of
j-th layer and N is the total number of layers. Although the methods developed by Aghalovyan [2]
are very powerful, they are rather sophisticated.

Using much simpler transformations than those used in [2], Argatov and Mishuris (see page 14
in [3]), demonstrate that the contact problem for a thin transversely isotropic layer in leading order
asymptotic approximation is reduced to the problem for a Winkler-Fuss layer. If Hooke's law for a
transversely isotropic layer is written in matrix form as

{σ11, σ22, σ33, σ23, σ13, σ12}T = [A] {ε11, ε22, ε33, ε23, ε13, ε12}T ,

where [A] is the matrix of elastic constants, then in leading order approximation the transversely-
isotropic thin layer is reduced to the Winkler-Fuss foundation with sti�ness coe�cient

KTI =
A33

h
. (13)

Note that alternative asymptotic approaches were also considered in application to the problem
for a thin coating. Alexandrov [49] considered 2D contact problem for a thin coating covering elastic
half-space (plane strain). However, this solution had several additional assumptions. Further we will
study only direct asymptotic approaches to the contact problems.

3 The GKN asymptotic approach to contact problem for an

elastic compressible layer

As it has been discussed above, contact problem for a rigid indenter and an elastic layer bonded to
rigid substrate was studied in a number of publications. Nevertheless, for the sake of completeness,
we derive leading order asymptotic solution of indentation problem for an elastic layer bonded to
rigid substrate using the GKN (Goldenveizer-Kaplunov-Nolde) method. This quite simple asymptotic
method was initially introduced as "the method of direct asymptotic integration" by Goldenveizer
in his papers and the second edition of his classic book on shell theory [50, 51], then the method
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was enhanced and clearly explained in [4]. Although the GKN method was originally developed
for applications in theory of plates and shells, it was already applied to two-dimensional contact
problems [52]. Here the GKN method is applied directly to variables of the spatial contact problem
formulation. This allows us to obtain the expressions for displacements and stresses acting in the
elastic layer.

According to the ideas of the GKN asymptotic integration procedure, we �rst dilate the scale
of the independent variables and assume that di�erentiation with respect to the scaled variables
does not change the asymptotic order of the quantities to be found. We assume also that the layer
thickness is small compared to the radius of contact, i.e. the parameter

ε = h/a (14)

is small. Following the GKN asymptotic procedure, we set

ui (x1, x2, x3) = hεu∗i (x1, x2, x3) , i = 1, 2,
u3 (x1, x2, x3) = hu∗3 (x1, x2, x3) ,
σjj (x1, x2, x3) = µσ∗jj (x1, x2, x3) , j = 1, 2, 3,
σk3 (x1, x2, x3) = σ3k (x1, x2, x3) = µ εσ∗k3 (x1, x2, x3) , k = 1, 2,
σ12 (x1, x2, x3) = σ21 (x1, x2, x3) = µ ε2σ∗12 (x1, x2, x3) ,

(15)

where quantities with asterisks are assumed of the same asymptotic order. Note that repeated
subscripts do not imply summation in the latter expression and throughout the whole paper.

According to the GKN asymptotic method, we introduce the following dimensionless variables

ξ1 =
x1
a
, ξ2 =

x2
a
, ξ3 =

x3
h
. (16)

Substituting (16) into (15), we can write the governing equations as

σ∗11,1 + ε2σ∗12,2 + σ∗13,3 = 0,
ε2σ∗12,1 + σ∗22,2 + σ∗23,3 = 0,
ε2
(
σ∗13,1 + σ∗23,2

)
+ σ∗33,3 = 0,

σ∗11 = ε2
(
κ2u∗1,1 + (κ2 − 2)u∗2,2

)
+ (κ2 − 2)u∗3,3,

σ∗22 = ε2
(
(κ2 − 2)u∗1,1 + κ2u∗2,2

)
+ (κ2 − 2)u∗3,3,

σ∗33 = ε2 (κ2 − 2)
(
u∗1,1 + u∗2,2

)
+ κ2u∗3,3,

σ∗ij = u∗i,j + u∗j,i, i, j = 1, 2, 3 (i 6= j),

(17)

with comma in the subscript denoting di�erentiation with respect to the corresponding dimensionless
variable ξj and

k2 =
2− 2ν

1− 2ν
.

The boundary conditions (4) can be represented as

u∗3 (ξ1, ξ2, 0) =
1

h
(δ − ϕ (ξ1, ξ2)) , (ξ1, ξ2) ∈ G∗,

σ∗13 (ξ1, ξ2, 0) = σ∗23 (ξ1, ξ2, 0) = 0,
u∗1 (ξ1, ξ2, 1) = u∗2 (ξ1, ξ2, 1) = u∗3 (ξ1, ξ2, 1) = 0,

(18)

where G∗ is the region of contact in the (ξ1, ξ2) plane.
In order to reduce the number of unknowns let us transform (17) into the form of Lamé equations,

keeping only unknown displacements.(
k2 − 1

)
u∗3,13 + u∗1,33 + ε2

(
k2u∗1,11 + u∗1,22 +

(
k2 − 1

)
u∗2,12

)
= 0,(

k2 − 1
)
u∗3,23 + u∗2,33 + ε2

(
u∗2,11 + k2u∗2,22 +

(
k2 − 1

)
u∗1,12

)
= 0,

k2u∗3,33 + ε2
(
u∗3,11 + u∗3,22 +

(
k2 − 1

) (
u∗1,13 + u∗2,23

))
= 0.

(19)

7



After eliminating stresses, the boundary conditions (18) can be transformed to the following form

u∗3 (ξ1, ξ2, 0) =
1

h
(δ − ϕ (ξ1, ξ2)) , (ξ1, ξ2) ∈ G∗,

u∗i,3 (ξ1, ξ2, 0) + u∗3,i (ξ1, ξ2, 0) = 0, i = 1, 2,

u∗1 (ξ1, ξ2, 1) = u∗2 (ξ1, ξ2, 1) = u∗3 (ξ1, ξ2, 1) = 0,

(20)

Equations (19) contain only ε2 terms, therefore the following asymptotic expansion may be used

ui
∗ = ui

(0) + ε2ui
(1) + ε4ui

(2) + ... i = 1, 2, 3. (21)

(Note that ui
(k) are dimensionless asymptotic approximations of k-th order for i-th displacement).

Thus, the leading order approximation to the non-adhesive contact problems is reduced to the
following boundary value problem:

(i) the governing equations

(
k2 − 1

)
u
(0)
3,i3 + u

(0)
i,33 = 0, i = 1, 2, (22a)

k2u
(0)
3,33 = 0, (22b)

and (ii) the boundary conditions

u
(0)
3 =

1

h
(δ − ϕ (ξ1, ξ2)) , ξ3 = 0, (23a)

u
(0)
i,3 + u

(0)
3,i = 0, ξ3 = 0, i = 1, 2, (23b)

u
(0)
1 = u

(0)
2 = u

(0)
3 = 0, ξ3 = 1. (23c)

Further we consider and solve only the above leading order approximation of the problem (the
zero-order problem).

3.1 Leading order solution

It follows from (22b) that

u
(0)
3 = ξ3F1 (ξ1, ξ2) + F2 (ξ1, ξ2) . (24)

On satisfying boundary conditions (23a) and (23c) one obtains that F2 =
1

h
(δ − ϕ) , F1 = −F2.

Hence, we have

u
(0)
3 (ξ1, ξ2, ξ3) =

1

h
[δ − ϕ (ξ1, ξ2)] (1− ξ3) . (25)

Substitution of the latter into (22a) yields

u
(0)
i,33 =

1

h

(
1− k2

)
ϕ,i i = 1, 2. (26)

The solutions of the above equations have the following structure

u
(0)
i =

1

2h

(
1− k2

)
ϕ,iξ

2
3 + ξ3F3i (ξ1, ξ2) + F4i (ξ1, ξ2) , i = 1, 2. (27)

Substituting the above expressions into (23b), one obtains[
1

h

(
ξ3 − k2ξ3 − 1 + ξ3

)
ϕ,i + F3i

]∣∣∣∣
ξ3=0

= 0 or F3i =
1

h
ϕ,i i = 1, 2.

8



Taking the latter expressions into account and applying the boundary condition (23c) we arrive at

F4i = −1

h

(
1 +

1− k2

2

)
ϕ,i =

1

2h

(
k2 − 3

)
ϕ,i i = 1, 2.

Finally the expressions for u
(0)
i are the following:

u
(0)
i =

1

2h
ϕ,i
[(

1− k2
)
ξ23 + 2ξ3 + k2 − 3

]
i = 1, 2. (28)

Thus, the displacements of the leading order approximation are

u
(0)
i =

1

2h
ϕ,i [(1− k2) ξ23 + 2ξ3 + k2 − 3] , i = 1, 2,

u
(0)
3 =

1

h
(δ − ϕ) (1− ξ3) .

(29)

Because in the leading term approximation of the problem it is assumed that u∗1 ≈ u
(0)
1 , u∗2 ≈

u
(0)
2 , u∗3 ≈ u

(0)
3 , we obtain from (17) that σ∗ii ≈ (k2 − 2)u∗3,3 (i = 1, 2), σ∗33 ≈ k2u∗3,3, and σ∗ij =

u∗i,j + u∗j,i (i, j = 1, 2, 3; i 6= j).
Therefore, the normalized stresses of the leading order approximation are

σ∗ii ≈
1

h

(
2− k2

)
(δ − ϕ) , i = 1, 2,

σ∗33 ≈ −
k2

h
(δ − ϕ) ,

σ∗12 ≈
1

h

((
1− k2

)
ξ23 + 2ξ3 + k2 − 3

)
ϕ,12,

σ∗i3 ≈
1

h
ϕ,i
(
2− k2

)
ξ3, i = 1, 2.

(30)

3.2 Solution in dimensional variables

Let us write the above solution for the leading order approximation in dimensional variables. Using
the scaling expressions (15), we obtain for the displacements

ui = εhu∗i ≈
h

2a
ϕ,i
((

1− k2
)
ξ23 + 2ξ3 + k2 − 3

)
, i = 1, 2,

u3 = hu∗3 ≈ (δ − ϕ) (1− ξ3) ,
(31)

and the stresses
σii = µσ∗ii ≈

µ

h

(
2− k2

)
(δ − ϕ) , i = 1, 2,

σ33 = µσ∗33 ≈ −
µ

h
k2 (δ − ϕ) ,

σ12 = ε2µσ∗12 ≈
µh

a2
((

1− k2
)
ξ23 + 2ξ3 + k2 − 3

)
ϕ,12,

σi3 = εµσ∗i3 ≈
µ

a

(
2− k2

)
ϕ,iξ3, i = 1, 2.

(32)

respectively.
Consider the second formula from (32). Since the contact pressure can be expressed as

p = − σ33|ξ3=0, in leading order approximation we have

p ≈ µ

h
k2 (δ − ϕ) . (33)

9



The external force may be found from (7).
It is clear from (33) that pressure value at any given point of contact area is proportional to the

vertical displacement of that point (which is equal to δ − ϕ). In fact, this means that the thin layer
attached to rigid substrate behaves exactly as Winkler-Fuss elastic foundation (compare (33) with
(8)). The sti�ness coe�cient of the foundation K is described by (10).

Without doubt the transformations of the GKN approach presented in the current Section are
much more straightforward than these of the integral equations approach. The above direct asymp-
totic decomposition is based on the GKN asymptotic approach, i.e. the direct asymptotic integration
of the boundary value problem using ideas described in [4, 50]. However, as it has been mentioned
above there is another direct asymptotic approach to the problem developed by Argatov and Mishuris
in [3].

Let us compare the two direct asymptotic approaches: (i) the AM approach [3] and (ii) the GKN
one [4]. It is clear that the proper scaling plays a key role in both approaches, namely the independent
variables are scaled as x1 = aξ1, x2 = aξ2, x3 = hξ3. However, the GKN approach scales additionally
the unknown displacements and stresses using (15). Hence, working in the AM techniques, one has
to deal with the terms of orders O (1), O (ε), O (ε2) in the governing equations, while the GKN
approach results in twice less amount of transformations because the equations contain only terms
of orders O (1) and O (ε2) in this case. Indeed, the unknowns can be expanded in asymptotic series
using only even powers of ε in the GKN case, while one has to consider the equations corresponding
to all consecutive powers of the small parameter in the AM approach. In addition, as the result of
proper scaling in each subsequent approximation, one has all the unknowns to be non-zero while in
the AM case in each subsequent approximation some unknowns are always zero.

The further analysis shows that after all the back-substitutions (i.e. (31)-(32) in our case) the
resulting expansions in dimensional variables have the same structure in both approaches. However,
these expansions are obtained in the GKN case using much lesser number of operations and more
reasonable scaling. This scaling indeed can be veri�ed, for example, by consideration of a model
problem for a speci�c indenter pro�le allowing separation of variables, say, of sinusoidal shape or
using numerical simulations by the Finite Element Method.

Thus, the GKN approach is more favourable because it bene�ts from more reasonable scaling
and twice lesser number of operations. It is evident that if the GKN approach is applied to a thin
transversely isotropic elastic layer then one obtains (13) instead of (10).

4 Adhesive contact problems for a thin elastic layer

Now let us consider a simple Winkler-Fuss elastic foundation whose elastic properties are charac-
terized by the foundation modulus K. First we derive an expression for the slope of the force
-displacement curve for an axisymmetric non-adhesive contact problem for the Winkler-Fuss foun-
dation. Then we consider an adhesive contact problem for the foundation in the framework of the
JKR approach.

4.1 The slope of the force-displacement curve for an axisymmetric inden-

ter pressing the Winkler-Fuss foundation.

It is known (e.g. [15�17]) that knowledge of the slope of the force-displacement curve can be used to
solve problems of adhesive contact within the framework of the JKR ideas. In particular, it allowed
the authors of [15�17] to provide compact solutions to the adhesive contact problems within the
framework of the JKR contact theory.

Further in the present paper, we also use the expression of the slope of the force-displacement
curve of the non-adhesive contact problem to simplify the transformations related to the JKR contact

10



theory. The expression for the slope of the P − δ curve can be obtained as follows.
Let us consider a simple Winkler-Fuss elastic foundation whose elastic properties are characterized

by the foundation modulus K. Consider an axisymmetric convex, smooth indenter of arbitrary shape
f(r) pressed into this elastic foundation (Fig. 2).

In this case the contact region is a circle of radius a and the boundary conditions for the foundation
can be written as

u3(r, 0) = δ − f(r), σ33(r, 0) ≤ 0, r ≤ a,

u3(r, 0) > δ − f(r), σ33(r, 0) = 0, (x1, x2) ∈ R2 \G,
(34)

Since the contact pressure becomes zero on the boundary of the contact region r = a, one can
easily obtain from (33) that δ − f(a) = 0 and therefore

δ = f(a). (35)

Because the foundation is bounded to the rigid support, the conditions at the bottom of the layer
are

u3(r, h) = 0. (36)

Figure 2: Problem formulation for Winkler-type foundation

The volume of the body under the cross�section of height δ is given by

V = 2π

∫ ∞
0

[δ − f(r)]H[δ − f(r)]rdr,

where H is the Heaviside step function. Using (35) this expression can be presented as

V = 2π

[
0.5δa2 −

∫ a

0

f(r)rdr

]
= π

[
f(a)a2 − 2

∫ a

0

f(r)rdr

]
.

Hence, for the contact force according to (9), we have

P = 2πK

[
0.5δa2 −

∫ a

0

f(r)rdr

]
. (37)

By di�erentiating (37), we obtain

dP

da
= 2πK

[
0.5a2

dδ

da
+ δa− f(a)a

]
.
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Therefore, we have the �nal result for the slope

S(a) =
dP/da

dδ/da
=
dP

dδ
= πa2K. (38)

The above expression is also valid for leading order approximations of the solutions for isotropic and
transversely isotropic linear or linearized elastic layers. If the material is isotropic then K is de�ned
by (10), if coating is multilayered or it is transversely isotropic then K is de�ned by (12) or (13)
respectively.

Comment. Yang [36] considered three particular cases of both non-adhesive and adhesive contact
problems for an isotropic layer within the framework of his approximate model: �at-ended cylindrical,

spherical and conical indenters. For each of the cases of non-adhesive contact, the slope
dP

dδ
was

evaluated individually. Evidently, these results are particular cases of (38). The solutions for each
case of indenters were obtained individually disregarding that all the three shapes are particular
cases of power law indenter f (r) = Brd.

4.2 JKR-type adhesion problems for axisymmetric indenter and Winkler-

Fuss foundation

Our approach was announced in [53], where we claimed that using the results presented in [1] we
can solve problems of adhesive contact for the indenter and a layer represented as the Winkler-
Fuss elastic foundation. However, no detail of our calculations were published. The JKR approach
to adhesion contact problems for the Winkler-Fuss foundation were also studied earlier by other
researchers. As it has been mentioned above, Yang [36] considered separately adhesive contact
problems for three cases of indenters disregarding that all the three shapes are particular cases of
power law indenter f (r) = Brd. The approach developed in [54] was based on a conservation of
energy, however the geometrically non-linear formulation was used, while here we develop approaches
based on geometrically linear formulations of the contact problems.

Following the JKR idea, we can note that if there were no surface forces of attraction, the radius
of the contact area under a punch subjected to the external load P0 would be a0 and it could be
found by solving the Hertz-type contact problem. However, in the presence of the forces of molecular
adhesion, the equilibrium contact radius a1 is greater than a0 under the same force P0 (Fig. 3).
Hence, the total energy of the contact system UT is built up of three terms, the stored elastic energy
UE, the mechanical energy in the applied load UM and the surface energy US, while UE is calculated
as the di�erence between the stored elastic energies (UE)1 and (UE)2. Here (UE)1 is the elastic
energy of Hertz-type contact system without adhesive interactions; the system is loaded until the
true contact radius a1 is obtained, however the values of the corresponding external load P1 and
the displacement δ1 are not correct. (UE)2 is the elastic energy of Boussinesq-type contact system
for a �at ended indenter having constant radius; the system is keeping the true contact radius and
it is unloaded from P1 to the value of true external load P0 and the true displacement value δ2 is
calculated assuming that the total energy has minimum at equilibrium. We will keep further in this
subsection the original JKR notations a1, δ2 and P0 of the true values for the contact radius, depth
of indentation and the force respectively.

Therefore, we can write

(UE)1 = P1δ1 −
∫ P1

0

δdP. (39)

Using an analogy to the Boussinesq solution, we obtain for the unloading branch

(UE)2 =

∫ P1

P0

P

S(a1)
dP =

P 2
1 − P 2

0

2S(a1)
. (40)
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Figure 3: Construction of JKR load-displacement curve

Thus, the stored elastic energy UE is

UE = (UE)1 − (UE)2. (41)

The mechanical energy in the applied load

UM = −P0δ2 = −P0(δ1 −∆δ), (42)

where ∆δ = δ1 − δ2 is the change in the depth of penetration due to unloading.
Since only the surface adhesive interactions within the contact region are taken into account (one

neglects the adhesive forces acting outside the contact region), the surface energy can be written as

US = −wπa21. (43)

The total energy UT can be obtained by summation of (41), (42) and (43), i.e.

UT = UE + UM + US. (44)

It is assumed in the JKR model that the equilibrium at contact satis�es the equation

dUT
da1

= 0, or
dUT
dP1

= 0. (45)

Taking into account an analogy to the Boussinesq solution , one obtains for the unloading branch

∆δ =
P1 − P0

S(a1)
,

and therefore, one has

UM = −P0

(
δ1 − P0

P1 − P0

S(a1)

)
and (UE)2 =

P 2
1 − P 2

0

2S(a1)
.

Hence, the total energy UT can be written as

UT = P1δ1 −
∫ P1

0

δ(P )dP − (P 2
1 − P 2

0 )

2S(a1)
− P0δ1 + P0

(P1 − P0)

S(a1)
− wπa21
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or

UT = P1δ1 −
∫ P1

0

δ(P )dP − (P1 − P0)
2

2S(a1)
− P0δ1 − wπa21.

Finally, one obtains

UT = (P1 − P0)δ1 −
∫ P1

0

δ(P )dP − (P1 − P0)
2

2S(a1)
− wπa21. (46)

Taking into account the following expressions

d

dP1

[(P1 − P0)δ1] = (P1 − P0)
dδ1
dP1

+ δ1 =
(P1 − P0)

S(a1)
+ δ1,

d

dP1

∫ P1

0

δ(P )dP = δ(P1) = δ1,

and

d

dP1

(P1 − P0)
2

2S(a1)
=

(P1 − P0)

S(a1)
− (P1 − P0)

2

2S2(a1)

dS

da1

da1
dP1

,

and applying the equilibrium condition (45) to (46), one obtains

dUT
dP1

=
(P1 − P0)

S(a1)
+ δ1 − δ1 −

(P1 − P0)

S(a1)
+

(
(P1 − P0)

2

2S2(a1)

dS

da1
− 2wπa1

)(
da1
dP1

)
= 0. (47)

Due to the expressions (38), it follows from (47) that the equilibrium condition for the general JKR
model is

dUT
dP1

=

[
(P1 − P0)

2

πKa31
− 2wπa1

]
da1
dP1

= 0 (48)

or
(P1 − P0)

2 = 2π2wKa41. (49)

Further one has
P1 − P0 =

√
2wKπa21 = πKa21∆δ

and hence, the following expression is valid

∆δ =

√
2wKπa21
πKa21

=

√
2w

K
.

Thus, for an arbitrary convex body of revolution f(r), f(0) = 0, the JKR theory leads to the
following expressions

P1 = P0 +
√

2wKπa21, δ2 = δ1 −
√

2w

K
. (50)

Taking into account formulae (35) and (37), the relations (50) can be written as

P0 = P1 −
√

2wKπa21 = πK

[
f(a1)a

2
1 − 2

∫ a1

0

f(r)rdr

]
−
√

2wKπa21 (51)

and

δ2 = f(a1)−
(

2w

K

)1/2

. (52)
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Further we remove auxiliary subscripts and will use the notations P , δ and a instead of P0, δ2 and
a1 for the true values of the force, the approach of the indenter and the contact radius in adhesive
contact problem.

Finally, after simple transformations the relations (51) and (52) between the true values of the
force, the approach of the indenter and the contact radius can be written as

P = πKa2

(
f(a)−

√
2w

K

)
− 2πK

∫ a

0

f(r)rdr (53)

and

δ = f(a)−
√

2w

K
. (54)

Note that the above transformations of the JKR approach have been done in general form, without
specifying the particular expression for the slope of the P − δ curve S(a) until the last stage. This
makes the transformations more compact and easier to read.

4.3 Adhesive indentation of an elastic layer by non-ideal shaped indenters

The depth-sensing indentation (DSI) is the continuously monitoring of the P − δ diagram where P
is the applied load and δ is the displacement (the approach of the distant points of the indenter
and the sample). DSI techniques are especially important when mechanical properties of materials
are studied using very small volumes of materials such as thin �lms. Hence, the present asymptotic
approach may be used in material testing (however, these questions are out the scope of the paper). It
is usually assumed that the indenter is a sharp pyramid or a cone. However, the indenter shape near
the tip has some deviation from its nominal shape. The shapes of these non-ideal shaped indenters
may be well approximated as monomial functions of radius

f(r) = Bdr
d, d ≥ 1 (55)

where Bd is the constant of the shape of the monomial function of degree d (see, [13, 17, 55] for
details). For indenters, whose shape is described by (55), the general expressions (53) and (54) have
the following form

P = πK

(
d

d+ 2
Bda

d+2 −
√

2w

K
a2

)
(56)

and

δ = Bda
d −

√
2w

K
. (57)

It follows from (56) and (57) that the relation P (δ) can be expressed not only in a parametric form
but also as an explicit relation

P =
πK

d+ 2

[
1

Bd

(
δ +

√
2w

K

)]2/d(
δd− 2

√
2w

K

)
. (58)

In order to write the latter expressions in dimensionless form, let us follow the same procedure
as it was used in [14,15] for the generalized JKR theory for elastic solids.

It follows from (56) that at P = 0 the radius a of the contact region and the corresponding
displacement δc = δ[a(0)] are

a(0) =

(
d+ 2

dBd

√
2w

K

)1/d

, δc = δ[a(0)] =
2

d

√
2w

K
. (59)
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Further note that
dP

dδ
=
dP

da
/
dδ

da
.

Therefore, the root (ac) of the equation
dP

da
= 0

is the critical radius of the contact region. It gives the maximum absolute value of the adherence
force Pc = −P (ac). Taking the derivative of (56), we obtain

ac =

(
2

dBd

√
2w

K

)1/d

. (60)

Substituting (60) into (56), we obtain

Pc = −P (ac) = πK
d

d+ 2

(
2

dBd

)2/d(
2w

K

)(2+d)/2d

. (61)

As it was mentioned in [14], various variables may be used to write the dimensionless solutions.
In particular, both values a(0) and ac can be used as a characteristic size of the contact region in
order to write dimensionless parameters.

If one takes the characteristic parameters as ac, Pc and δc, then substituting (59), (61) and (60)
into the system (56) and (57), we obtain the following dimensionless equations

P/Pc =
d+ 2

d

[
2

d+ 2
(a/ac)

d+2 − (a/ac)
2

]
, (62)

δ

δc
=

(
a

ac

)d
− d

2
. (63)

and

P/Pc =

(
2

d

)1−2/d(
2

d

δ

δc
+ 1

)2/d(
δ

δc
− 1

)
. (64)

Let us consider another variant of the characteristic parameters, namely take a(0) as the char-
acteristic size of the contact region in order to write dimensionless parameters. value. The two
remaining parameters are chosen as follows:

a∗ = a(0), P ∗ = πK

(
d+ 2

dBd

) 2
d
(

2w

K

) 2+d
2d

, δ∗ =

√
2w

K
. (65)

Then (56) and (57) have the following dimensionless form

P/P ∗ = (a/a∗)d+2 − (a/a∗)2 (66)

and
δ

δ∗
=
d+ 2

d

( a
a∗

)d
− 1. (67)
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4.4 Adhesive contact of a spherical indenter

For a spherical indenter of radius R, we can represent the shape of the indenter as a parabolid of
revolution:

f(r) =
r2

2R
,

i.e.
d = 2 and B2 = (2R)−1 (68)

Now we substitute these values into the expressions of the general solution. From (56) and (57), we
obtain

P = πK
(

1
4R
a4 −

√
2w
K
a2
)

δ = a2/(2R)−
√

2w
K
.

(69)

and from (58) the following explicit force-displacement relation is obtained:

P = πKR

[(
δ +

√
2w

K

)(
δ −

√
2w

K

)]
= πRK

(
δ2 − 2w

K

)
. (70)

Substituting (68) into (56), (60) and (61), we obtain

ac =

(
8R2w

K

)1/4

, a(0) =

(
32R2w

K

)1/4

, (71)

Pc = −P (ac) = 2πRw and δc = δ[a(0)] =

√
2w

K
. (72)

The force-displacement relation in the contact problem without adhesion is a parabola P =
πRKδ2, while in the adhesive contact problem, the relation is described by (70), i.e. it is the same
parabola shifted by the value Pc in the negative direction of P -axis.

The contact pressure can be represented as

p (r) = K

(
δ − r2

2R

)
=

K

2R

(
a2 − r2

)
−
√

2Kw. (73)

Zero contact pressure is achieved at the radius value

r0 =

√
a2 − 2R

√
w

K
. (74)

Maximum contact pressure is at r = 0

pmax =
Ka2

2R
−
√

2Kw. (75)

The graph of the function p (r) is represented in Fig. 4.
Substituting d = 2 into (62), we obtain the following dimensionless equation

P

Pc
=

(
a

ac

)4

− 2

(
a

ac

)2

, (76)

The graph of dimensionless dependency (76) is represented in Fig. 5.
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Figure 4: Contact pressure distribution under a spherical indenter.

Figure 5: Dependency between indentation force and contact radius in dimensionless form

In the same way the equations (63) and (64) can be transformed in the following dimensionless
equations

δ

δc
=

(
a

ac

)2

− 1 (77)

and
P

Pc
=

(
δ

δc

)2

− 1. (78)

The graph of dimensionless dependency (78) is represented in Fig. 6.
The above graphs can be used to obtain the leading order asymptotic approximation of the

problem of adhesive contact between a spherical indenter and a thin isotropic or transversely isotropic
elastic layer. One just needs to use either (10) or (13) for the elastic modulus of the elastic foundation.

Conclusions

Problems of contact between a rigid convex indenter and an elastic thin compressible layer bonded
to rigid substrate were studied in a number of publications. We have reviewed and examined some
approaches to the problems. It has been shown that many approximate solutions are in essence the
solution to the problem of contact between the indenter and a Winkler-Fuss elastic foundation. On
the other hand, asymptotic approaches to the problems provide mathematical justi�cation to the
use of the Winkler-Fuss elastic foundation. However, most of the asymptotic approaches are rather
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Figure 6: The dimensionless force-displacement curve for a spherical indenter

sophisticated. In particular, approaches based on integral formulation of the problem. As it was
mentioned by Johnson [18] the kernel of this formulation may have an awkward form and this may
lead to serious di�culties in the analysis of contact stresses in strips and layers.

Only relatively recently simple direct asymptotic approaches have been developed and applied
to the contact problems. Assuming that the thickness of the layer is much less than characteristic
dimension of the contact area, it has been shown that the GKN (Goldenveizer-Kaplunov-Nolde)
method [4] that was originally developed for applications in theory of plates and shells, may be
applied directly to variables of the contact problem formulation. It is easy to follow the method
and it has been naturally shown that the leading order asymptotic approximation of the problem
for a thin isotropic or transversely isotropic layer is actually the problem for a layer of springs
(the Winkler-Fuss elastic foundation). The GKN approach has been compared with another direct
asymptotic approach, the AM (Argatov-Mishuris) one [3]. We argue that although the GKN and AM
approaches are mathematically equivalent, the GKN approach has several advantages in producing
series, formulation of the boundary conditions and writing expressions for displacements and stresses
acting in the elastic layer.

For this leading order asymptotic approximation, i.e. for the Winkler-Fuss elastic foundation,
the axisymmetric adhesive contact is studied in the framework of the JKR theory. The governing
equations of the JKR theory are formulated and transformed using the slope of the non-adhesive force-
displacement curve in general form, which simpli�es transformations and makes them clearer. The
JKR approach has been generalized to the case of the punch shape being described by an arbitrary
blunt axisymmetric indenter. Connections of the results obtained to problems of nanoindentation in
the case of the indenter shape near the tip has some deviation from its nominal shape are discussed.
The explicit expressions are derived for the values of the pull-o� force and for the corresponding
critical contact radius for indenters whose shape is described by power-law functions. The solution
to the particular case of spherical indenter has been also discussed in detail.

Acknowledgements

The work was initiated as a part of activities of the CARBTRIB International Network supported
by the Leverhulme Trust. The results of the work were presented at the second CARBTRIB Inter-
national Network, Seville 21-23 April, 2017. The authors are grateful to the Leverhulme Trust for
the support of their collaboration.

Dr. Nikolay Perepelkin gratefully acknowledges that his participation in this project has received
funding from the European Union's Horizon 2020 research and innovation programme under the
Marie Skªodowska-Curie grant agreement No 663830.

19



References

[1] Alexandrov VM and Mkhitaryan SM. Contact Problems for Bodies with Thin Coatings and
Interlayers (in Russian). Nauka, Moscow, 1983.

[2] Aghalovyan L. Asymptotic theory of anisotropic plates and shells. World Scienti�c, 2015.

[3] Argatov I and Mishuris G. Contact Mechanics of Articular Cartilage Layers. Asymptotic Models.
Springer, 2015.

[4] Goldenveizer AL, Kaplunov JD and Nolde EV. On Timoshenko-Reissner type theories of plates
and shells. Int J Solids Struct 1993; 30(5): 675�694.

[5] Argatov II, Mishuris GS and Popov VL. Asymptotic modelling of the JKR adhesion contact for
a thin elastic layer. The Quarterly Journal of Mechanics and Applied Mathematics 2016; 69(2):
161�179.

[6] Argatov II, Borodich FM and Popov VL. JKR adhesive contact for a transversely isotropic layer
of �nite thickness. J Phys D: Appl Phys 2016; 49(4): 045307.

[7] Kendall K. Molecular Adhesion and Its Applications. Kluwer Academic/Plenum Publishers,
New York, 2001.

[8] Derjaguin BV. Untersuchungen über die reibung und adhäsion, IV. Theorie des anhaftens kleiner
teilchen. Kolloid Zeitschrift 1934; 69: 155�164.

[9] Johnson KL. A note on the adhesion of elastic solids. Brit J Appl Phys 1958; 9: 199�200.

[10] Sperling G. Eine Theorie der Haftung von Feststo�teilchen an festen Körpern. PhD Thesis,
Technische Hochschule Karlsruhe, 1964.

[11] Jung H. Ein beitrag zum loveschen verschiebungsfunktion. Ingenieur-Archiv 1950; 18: 178�190.

[12] Johnson KL, Kendall K and Roberts AD. Surface energy and the contact of elastic solids. Proc
R Soc Lond A 1971; 324: 301�313.

[13] Borodich FM, Galanov BA and Suarez-Alvarez MM. The JKR-type adhesive contact problems
for power-law shaped axisymmetric punches. J Mech Phys Solids 2014; 75: 14�32.

[14] Borodich FM, Galanov BA, Keer LM et al. The JKR-type adhesive contact problems for
transversely isotropic elastic solids. Mech Mater 2014; 75: 34�44.

[15] Borodich FM. The Hertz-type and adhesive contact problems for depth-sensing indentation.
Adv App Mech 2014; 47: 225�366.

[16] Borodich FM and Galanov BA. Contact probing of stretched membranes and adhesive interac-
tions: Graphene and other two-dimensional materials. Proc R Soc Ser A 2016; 464: 2759�2776.

[17] Borodich FM and Keer LM. Contact problems and depth-sensing nanoindentation for frictionless
and frictional boundary conditions. Int J Solids Struct 2004; 41: 2479�2499.

[18] Johnson KL. Contact Mechanics. Cambridge University Press, Cambridge, 1985.

[19] Kuznetsov VI. Elastic Foundation (in Russian). Literature on Construction and Architecture
Publishing, Moscow, 1952.

20



[20] Kerr AD. Elastic and viscoelastic foundationmodels. J Appl Mech Trans ASME 1964; 31(3):
491�498.

[21] Winkler E. Die Lehre von der Elastizitätund Festigkeit, mit Besonderer Rücksicht auf ihre
Anwendung in der Technik, für Polytechnische Schulen, Bauakademien, Ingenieure, Maschi-
nenbauer, Architekten, etc. Verlag H. Dominicus, Prague, 1867.

[22] Zimmermann H. Die Berechnung des Eisenbahnoberbaues. Wilhelm Ernst and Sohn, Berlin,
1888.

[23] Galanov BA. Spatial contact problems for rough elastic bodies under elastoplastic deformations
of the unevenness. PMM J Appl Math Mech 1984; 48(6): 750�757.

[24] Galanov BA. The method of boundary equations of the Hammerstein-type for contact problems
of the theory of elasticity when the regions of contact are not known. PMM J Appl Math Mech
1985; 49(5): 634�640.

[25] Borodich FM and Mosolov AB. Fractal roughness in contact problems. PMM J Appl Math
Mech 1992; 56: 681�690.

[26] Borodich FM and Onishchenko DA. Fractal roughness for problem of contact and friction (the
simplest models). J Friction Wear 1993; 14: 452�459.

[27] Borodich FM. Parametric homogeneity and non-classical self-similarity. II. Some applications.
Acta Mech 1998; 131: 47�67.

[28] Borodich FM. Parametric homogeneity and non-classical self-similarity. I. Mathematical back-
ground. Acta Mech 1998; 131: 27�45.

[29] Borodich FM and Galanov BA. Self-similar problems of elastic contact for non-convex punches.
J Mech Phys Solids 2002; 50: 2441�2461.

[30] Galanov BA. Models of adhesive contact between rough elastic bodies. Int J Mech Sci 2011;
53: 968�977.

[31] Alexandrov VM. On the solution of certain contact problems of the theory of elasticity. PMM
J Appl Math Mech 1963; 27(5): 1490�1494.

[32] Alexandrov VM and Vorovich II. Contact problems for the elastic layer of small thickness. PMM
J Appl Math Mech 1964; 28(2): 425�427.

[33] Meijers P. The contact problems for the rigid cylinder on an elastic layer. Appl Sci Res 1968;
18: 353�383.

[34] Ja�ar MJ. Asymptotic behaviour of thin elastic layers bonded and unbonded to a rigid founda-
tion. Int J Mech Sci 1989; 31(3): 229�235.

[35] Matthewson MJ. Axi-symmetric contact on thincompliant coatings. J Mech Phys Solids 1981;
29(2): 89�113.

[36] Yang F. Asymptotic solution to axisymmetricindentation of a compressible thin �lm. Thin Solid
Films 2006; 515: 2274�2283.

[37] Sridhar I, Johnson K and Fleck NA. Adhesion mechanics of the surface force apparatus. J Phys
D: Appl Phys 1997; 30: 1710�1719.

21



[38] Johnson KL and Sridhar I. Adhesion between a spherical indenter and an elastic solid with a
compliant elastic coating. J Phys D: Appl Phys 2001; 34: 683.

[39] Sridhar I, Zheng ZW and Johnson KL. Adetailed analysis of adhesion mechanics between a
compliant elastic coating and a spherical probe. J Phys D: Appl Phys 2004; 37: 2886�2895.

[40] Manevich LI and Vorobeva NI. On approximate equations of axisymmetrical problem of elasticity
theory for transversely isotropic foundation (in Russian). Soviet Applied Mechanics 1972; 8(10):
33�38.

[41] Vorovich II, Alexandrov VM and Babeshko VA. Non-classical Mixed Problems of the Theory of
Elasticity (in Russian). Nauka, Moscow, 1974.

[42] Alexandrov VM and Pozharskiy DA. Non-classical Spatial Problems of Mechanics of Contact
Interaction of Elastic Bodies (in Russian). Faktorial, Moscow, 1998.

[43] Galanov BA. Nonlinear boundary equations of one-sided boundary value problems in the me-
chanics of the contact of elastic bodies (in Russian). Izvestiya Vysshikh Uchebnykh Zavedeniy:
Mathematika 1989; 3: 82�85.

[44] Strel'nitskij VE, Galanov BA, Grigir'ev ON et al. Elastic characteristics of diamond-like carbon
coatings. Diamond and Related Materials 1993; 2: 869�872.

[45] Kindrachuk VM, Galanov BA, Kartuzov VV et al. On elastic nanoindentation of coated half-
spaces by point indenters of non-ideal shapes. Nanotechnology 2006; 17: 1104�1111.

[46] Galanov BA and Valeeva IK. Sliding adhesive contact of elastic solids with stochastic roughness.
Int J Eng Sci 2016; 101: 64�80.

[47] Galanov BA. Sbornik Nauchnykh Trudov AN USSR, Institut Matematiki, chapter "On resolv-
ability of boundary equations of one-sided boundary value problems of contact mechanics of
coated elastic bodies. Contemporary analysis and applications"(in Russian). Naukova Dumka,
Kiev, 1989. pp. 23�30.

[48] Aleksandrova GP. Contact problems of bending of plates resting on elastic foundation (in
Russian). Izvestiya Academii Nauk Mekhanika Tverdogo Tela 1973; 1: 97�106.

[49] Alexandrov VM. Contact problems on soft and rigid coatings of an elastic half-plane. Mech
Solids 2010; 45: 34�40.

[50] Goldenveizer AL. Theory of Elastic Thin Shells (in Russian), 2nd Edn. Nauka, Moscow, 1976.

[51] Goldenveizer AL. Derivation of an approximate theory of bending of a plate by the method
of asymptotic integration of the equations of the theory of elasticity. PMM J Appl Math Mech
1962; 26(4): 1000�1025.

[52] Erba³ B, Yusufo§lu E and Kaplunov J. A plane contact problem for an elastic orthotropic strip.
J Eng Math 2011; 70(4): 399�409.

[53] Borodich FM, Galanov BA, Gorb SN et al. Adhesive contact problems at macro and nano scales.
In Proc. 3rd Europ. Conf. Tribology CD-ROM (ISBN 978-3-901657-39-9), volume 1. pp. 15�20.

[54] Hill IJ and Sawyer WG. Energy, adhesion, and the elastic foundation. Tribol Lett 2010; 37:
453�461.

[55] Borodich FM, Keer LM and Korach CS. Analytical study of fundamental nanoindentation test
relations for indenters of non-ideal shapes. Nanotechnology 2003; 14: 803�808.

22


