1,587 research outputs found

    Correlation functions and emission time sequence of light charged particles from projectile-like fragment source in E/A = 44 and 77 MeV 40Ar + 27Al collisions

    Full text link
    Two-particle correlation functions, involving protons, deuterons, tritons, and alpha-particles, have been measured at very forward angles (0.7 deg < theta_lab < 7 deg), in order to study projectile-like fragment (PLF) emission in E/A = 44 and 77 MeV 40Ar + 27Al collisions. Peaks, originating from resonance decays, are larger at E/A = 44 than at 77 MeV. This reflects the larger relative importance of independently emitted light particles, as compared to two-particle decay from unstable fragments, at the higher beam energy. The time sequence of the light charged particles, emitted from the PLF, has been deduced from particle-velocity-gated correlation functions (discarding the contribution from resonance decays). Alpha-particles are found to have an average emission time shorter than protons but longer than tritons and deuterons.Comment: 18 pages, 5 figures, submitted to Nuclear Physics

    Investigation of the RTN Distribution of nanoscale MOS devices from subthreshold to on-state

    Get PDF
    This letter presents a numerical investigation of the statistical distribution of the random telegraph noise (RTN) amplitude in nanoscale MOS devices, focusing on the change of its main features when moving from the subthreshold to the on-state conduction regime. Results show that while the distribution can be well approximated by an exponential behavior in subthreshold, large deviations from this behavior appear when moving toward the on-state regime, despite a low probability exponential tail at high RTN amplitudes being preserved. The average value of the distribution is shown to keep an inverse proportionality to channel area, while the slope of the high-amplitude exponential tail changes its dependence on device width, length, and doping when moving from subthreshold to on-state

    Correlations and Characterization of Emitting Sources

    Get PDF
    Dynamical and thermal characterizations of excited nuclear systems produced during the collisions between two heavy ions at intermediate incident energies are presented by means of a review of experimental and theoretical work performed in the last two decades. Intensity interferometry, applied to both charged particles (light particles and intermediate mass fragments) and to uncharged radiation (gamma rays and neutrons) has provided relevant information about the space-time properties of nuclear reactions. The volume, lifetime, density and relative chronology of particle emission from decaying nuclear sources has been extensively explored and has provided valuable information about the dynamics of heavy-ion collisions. Similar correlation techniques applied to coincidences between light particles and complex fragments are also presented as a tool to determine the internal excitation energy of excited primary fragments as it appears in secondary-decay phenomena.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume "Dynamics and Thermodynamics with Nuclear Degrees of Freedom

    The complement: a solution to liquid drop finite size effects in phase transitions

    Full text link
    The effects of the finite size of a liquid drop undergoing a phase transition are described in terms of the complement, the largest (but still mesoscopic) drop representing the liquid in equilibrium with the vapor. Vapor cluster concentrations, pressure and density from fixed mean density lattice gas (Ising) model calculations are explained in terms of the complement. Accounting for this finite size effect is key to determining the infinite nuclear matter phase diagram from experimental data.Comment: Four two column pages, four figures, two tables; accepted for publication in PR

    Accurate modeling of gate capacitance in deep submicron MOSFETs with high-K gate-dielectrics

    No full text
    Gate capacitance of metal-oxide-semiconductor devices with ultra-thin high-K gate-dielectric materials is calculated taking into account the penetration of wave functions into the gate-dielectric. When penetration effects are neglected, the gate capacitance is independent of the dielectric material for a given equivalent oxide thickness (EOT). Our selfconsistent numerical results show that in the presence of wave function penetration, even for the same EOT, gate capacitance depends on the gate-dielectric material. Calculated gate capacitance is higher for materials with lower conduction band offsets with silicon. We have investigated the effects of substrate doping density on the relative error in gate capacitance due to neglecting wave function penetration. It is found that the error decreases with increasing doping density. We also show that accurate calculation of the gate capacitance including wave function penetration is not critically dependent on the value of the electron effective mass in the gate-dielectric region

    Quantum corrections for pion correlations involving resonance decays

    Full text link
    A method is presented to include quantum corrections into the calculation of two-pion correlations for the case where particles originate from resonance decays. The technique uses classical information regarding the space-time points at which resonances are created. By evaluating a simple thermal model, the method is compared to semiclassical techniques that assume exponential decaying resonances moving along classical trajectories. Significant improvements are noted when the resonance widths are broad as compared to the temperature.Comment: 9 pages, 4 figure

    Gerstmann-Sträussler-Scheinker disease subtypes efficiently transmit in bank voles as genuine prion diseases.

    Get PDF
    Gerstmann-Sträussler-Scheinker disease (GSS) is an inherited neurodegenerative disorder associated with mutations in the prion protein gene and accumulation of misfolded PrP with protease-resistant fragments (PrPres) of 6–8 kDa

    Quantum-Statistical Correlations and Single Particle Distributions for Slowly Expanding Systems with Temperature Profile

    Full text link
    Competition among particle evaporation, temperature gradient and flow is investigated in a phenomenological manner, based on a simultaneous analysis of quantum statistical correlations and momentum distributions for a non-relativistic, spherically symmetric, three-dimensionally expanding, finite source. The parameters of the model emission function are constrained by fits to neutron and proton momentum distributions and correlation functions in intermediate energy heavy-ion collisions. The temperature gradient is related to the momentum dependence of the radius parameters of the two-particle correlation function, as well as to the momentum-dependent temperature parameter of the single particle spectrum, while a long duration of particle evaporation is found to be responsible for the low relative momentum behavior of the two-particle correlations.Comment: 20 pages + 5 ps figures, ReVTeX, uses psfig.sty, the description is extended to include final state interactions, phenomenological evaporation and to fit intermediate energy heavy ion proton and neutron spectrum and correlation dat

    Upper Limit on the Prompt Muon Flux Derived from the LVD Underground Experiment

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured depth-angular distribution of muon intensities has been used to obtain the normalization factor, A, the power index, gamma, of the primary all-nucleon spectrum and the ratio, R_c, of prompt muon flux to that of pi-mesons - the main parameters which determine the spectrum of cosmic ray muons at the sea level. The value of gamma = 2.77 +/- 0.05 (68% C.L.) and R_c < 2.0 x 10^-3 (95% C.L.) have been obtained. The upper limit to the prompt muon flux favours the models of charm production based on QGSM and the dual parton model.Comment: 10 pages, 4 figures, RevTex. To appear in Phys. Rev.
    corecore