Correlation functions and emission time sequence of light charged
particles from projectile-like fragment source in E/A = 44 and 77 MeV 40Ar +
27Al collisions
Two-particle correlation functions, involving protons, deuterons, tritons,
and alpha-particles, have been measured at very forward angles (0.7 deg <
theta_lab < 7 deg), in order to study projectile-like fragment (PLF) emission
in E/A = 44 and 77 MeV 40Ar + 27Al collisions. Peaks, originating from
resonance decays, are larger at E/A = 44 than at 77 MeV. This reflects the
larger relative importance of independently emitted light particles, as
compared to two-particle decay from unstable fragments, at the higher beam
energy. The time sequence of the light charged particles, emitted from the PLF,
has been deduced from particle-velocity-gated correlation functions (discarding
the contribution from resonance decays). Alpha-particles are found to have an
average emission time shorter than protons but longer than tritons and
deuterons.Comment: 18 pages, 5 figures, submitted to Nuclear Physics