5 research outputs found

    Ophthalmic gels : past, present and future

    Get PDF

    Effect of Oppositely Charged Polymer and Dissolution Media on Rheology of Spray-Dried Ionic Complexes

    No full text
    The purpose of this research was to address the utility of rheological study in understanding the influence of oppositely charged polymers on release of naproxen sodium encapsulated in chitosan particles. The interaction between oppositely charged κ-carrageenan (κ-Ca) and chitosan leads to relatively higher gel strength, which is proportional to the ability to retard the drug release at acidic pH. The oscillatory tests within the linear viscoelastic range where the stress is proportional to the applied strain were performed on the hydrated sample matrices containing chitosan-naproxen sodium spray-dried complexes and k-Ca or hydroxypropyl methylcellulose (HPMC) in various ratios. It was observed that the effect of pH change on the dynamic moduli in spray-dried complexes containing κ-Ca was much stronger than that with HPMC reflecting presence of strong ionic interaction between κ-Ca and chitosan. The combination of oppositely charged polymers in different ratios proved to be useful in modulating the rheological properties of the hydrated formulations and their release-retarding properties. Dynamic moduli can be used to measure gel strength and are significant for the interpretation of oral sustained release spray-dried complexes

    Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin

    No full text
    Mucoadhesive materials adhere persistently to mucosal surfaces. A mucoadhesive delivery system could therefore facilitate the controlled release of drugs and optimize their bioavailability in mucosal tissues. Polysaccharides are the most versatile class of natural polymers for transmucosal drug delivery. We used microviscosimetry to explore the mucoadhesion of a library of polysaccharide families with diverse structural characteristics as a first step toward the rational design of mucoadhesive polysaccharide-based nanoformulations. Here we show that the magnitude of deviation between the viscosity of mixed polysaccharide–mucin solutions and the corresponding individual stock solutions can indicate underlying molecular interactions. We found that nonlinear monotonic curves predicted a correlation between the magnitude of interaction and the ability of polysaccharide coils to contract in the presence of salt (i.e., chain flexibility). Charge-neutral polysaccharides such as dextran and Streptococcus thermophilus exopolysaccharide did not interact with mucin. Synchrotron small-angle X-ray scattering (SAXS) data supported the previously described structural features of mucin. Furthermore, high-q scattering data (i.e., sensitive to smaller scales) revealed that when mucin is in dilute solution (presumably in an extended conformation) in the presence of low-Mw alginate, its structure resembles that observed at higher concentrations in the absence of alginate. This effect was less pronounced in the case of high-Mw alginate, but the latter influenced the bulk properties of mucin–alginate mixtures (e.g., hydrodynamic radius and relative viscosity) more prominently than its low-Mw counterpart
    corecore