541 research outputs found

    On the Taylor-Quinney coefficient in dynamically phase transforming materials. Application to 304 stainless steel

    Get PDF
    We present a thermodynamic scheme to capture the variability of the Taylor-Quinney coefficient in austenitic steels showing strain induced martensitic transformation at high strain rates. For that task, the constitutive description due to Zaera et al. (2012) has been extended to account for the heat sources involved in the temperature increase of the material. These are the latent heat released due to the exothermic character of the transformation and the heat dissipated due to austenite and martensite straining. Through a differential treatment of these dissipative terms, the Taylor-Quinney coefficient develops a direct connection with the martensitic transformation becoming stress, strain and strain rate dependent. The improved constitutive description sheds light on experimental results available in the literature reporting unusual (> 1) values for the Taylor-Quinney coefficient.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2011-24068) for the financial support received which allowed conducting part of this work. D. Rittel acknowledges the support of Carlos III University with a Cátedra de Excelencia funded by Banco Santander during academic year 2011–2012.Publicad

    On the complete extinction of selected imperfection wavelengths in dynamically expanded ductile rings

    Get PDF
    In this work the inception and development of multiple necks in dynamically expanded ductile rings with ab initio geometric imperfections has been addressed. Finite element simulations and linear perturbation analysis have been applied for that task. In the numerical calculations a selected wavelength is included into the model defining along the circumference of the ring an array of periodic geometric imperfections of predefined amplitude. In the stability analysis a perturbation of a given mode is added to the background solution and the growth rate of the perturbation is evaluated. The attention has been focused on the extinction of both long and short wavelength imperfections and the appearance of a dominant necking pattern which emerges when the geometric imperfections are vanished. The role played by the loading rate on the extinction of imperfections is also addressed. Moreover, the necking strain is found to be dependent on the imperfection pattern and the loading rate. Its maximum value is registered for the loading cases in which the initial imperfections distribution is completely extinguished.The authors are indebted to the Ministerio de Ciencia e Innovación de España (Projects DPI/2011 24068 and DPI/ 2011 23191) for the financial support

    Residual stresses in orthogonal cutting of metals: the effect of thermo-mechanical coupling parameters and of friction

    Get PDF
    21 pages, 13 figures.The generation of residual stresses in orthogonal machining is analysed by using an Arbitrary Lagrangian Eulerian (ALE) finite element approach. It is shown that a substantial level of tensile residual stresses can be obtained in the vicinity of the machined surface without any contribution of thermal effects. This motivates the development of a parametric study to analyse the effects of the thermomechanical coupling parameters on residual stresses. The roles of thermal expansion, of thermal softening and of the Taylor-Quinney coefficient (controlling the heat generated by plastic flow) are considered separately. The influence of friction is also analysed by assuming dry cutting conditions and a Coulomb friction law. The friction coefficient has a complex effect by controlling heat generation (frictional heating) along the tool rake and clearance faces and the propensity for the chip to stick to the tool. Geometrical effects such as the tool rake angle and the tool edge radius are also discussed.The authors are indebted, for the financial support of this work, to the Ministry of Science and Education of Spain (under project DPI2005-08018) and to the Comunidad Autónoma de Madrid and University Carlos III of Madrid (under project CCG07-UC3M/DPI-3396).Publicad

    Numerical modelling of orthogonal cutting: Influence of cutting conditions and separation criterion

    Get PDF
    6 pages, 5 figures.-- Issue title: "EURODYMAT 2006 - 8th International Conference on Mehanical and Physical Behaviour of Materials under Dynamic Loading" (Dijon, France, Sep 11-15, 2006).Chip formation is a high strain rate process studied with analytical and numerical models. Analytical models have the advantage of a small calculation time, however, they are often based on some assumptions which are difficult to verify. Finite element modelling (FEM) of chip formation process provides more details on the chip process formation, such as plastic strain, strain rate or stress fields. FEM can be used to improve the analytical models' assumptions. There is still a wide dispersion of formulations and numerical parameters adopted in order to obtain accurate results in numerical models. In the Lagrangian approach, it is of crucial importance to establish realistic criteria for element deletion, allowing chip separation from original workpiece. In the arbitrary Lagrangian Eulerian (ALE) formulation no element deletion is needed. This work is focused in modelization of orthogonal cutting. A comparison between both numerical approaches, Lagrangian and ALE is shown. The effects of geometrical parameters, erosion criterion and cutting speed are evaluated. Comparisons between numerical and theoretical results are performed, and the results obtained from the numerical approach are used as an input of analytical model, improving its accuracy."Program of Creation and Consolidation of Research Teams" University Carlos III of Madrid (2005).Publicad

    Finite element analysis of AISI 304 steel sheets subjected to dynamic tension: The effects of martensitic transformation and plastic strain development on flow localization

    Get PDF
    The paper presents a finite element study of the dynamic necking formation and energy absorption in AISI 304 steel sheets. The analysis emphasizes the effects of strain induced martensitic transformation (SIMT) and plastic strain development on flow localization and sample ductility. The material behavior is described by a constitutive model proposed by the authors which includes the SIMT at high strain rates. The process of martensitic transformation is alternatively switched on and off in the simulations in order to highlight its effect on the necking inception. Two different initial conditions have been applied: specimen at rest which is representative of a regular dynamic tensile test, and specimen with a prescribed initial velocity field in the gauge which minimizes longitudinal plastic wave propagation in the tensile specimen. Plastic waves are found to be responsible for a shift in the neck location, may also mask the actual constitutive performance of the material, hiding the expected increase in ductility and energy absorption linked to the improved strain hardening effect of martensitic transformation. On the contrary, initializing the velocity field leads to a symmetric necking pattern of the kind described in theoretical works, which reveals the actual material behavior. Finally the analysis shows that in absence of plastic waves, and under high loading rates, the SIMT may not further increase the material ductility.D. Rittel acknowledges the support of Carlos III University with a Cátedra de Excelencia funded by Banco Santander during academic year 2011-2012. The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10 UC3M/DPI 5596) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408) for the financial support received which allowed conducting part of this work

    Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies

    Get PDF
    Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors

    Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles

    Get PDF
    23 pages, 28 figures."This paper is dedicated to our friend, Professor Janusz Roman Klepaczko who passed away on August 15, 2008, for his pioneer contribution in the area of dynamic behavior of materials".In this paper a study is presented on the experimental and numerical analysis of the failure process of mild steel sheets subjected to normal impact by hemispherical projectiles. The experiments have been performed using a direct impact technique based on Hopkinson tube as a force measurement device. The tests covered a wide range of impact velocities. Both lubricated and dry conditions between specimen and projectile have been applied. Different failure modes for each case were found. For lubricated conditions a petalling was observed, whereas for dry conditions a radial neck along with a hole enlargement reduces the formation of petalling. The perforation process has been simulated by the application of 3D analysis using ABAQUS/Explicit FE code. The material behavior of the circular specimen was approximated by three different constitutive relations. The main task was to study the influence of the material definition on the response of the sheet specimen with special attention to the failure mode.The researchers of the University Carlos III of Madrid are indebted to the Spanish Ministry of Education (project DPI2005-06769), and to the Region of Madrid (project CCG06-UC3M/DPI-0796) for the financial support that allowed to perform a part of the numerical simulations. The researchers from the Metz University (Laboratory of Physics and Mechanics of Materials) acknowledgement some support by CNRS – France.Publicad

    Mammalian microRNAs predominantly act to decrease target mRNA levels

    Get PDF
    MicroRNAs (miRNAs) are endogenous ~22-nucleotide RNAs that mediate important gene-regulatory events by pairing to the mRNAs of protein-coding genes to direct their repression. Repression of these regulatory targets leads to decreased translational efficiency and/or decreased mRNA levels, but the relative contributions of these two outcomes have been largely unknown, particularly for endogenous targets expressed at low-to-moderate levels. Here, we use ribosome profiling to measure the overall effects on protein production and compare these to simultaneously measured effects on mRNA levels. For both ectopic and endogenous miRNA regulatory interactions, lowered mRNA levels account for most (≥84%) of the decreased protein production. These results show that changes in mRNA levels closely reflect the impact of miRNAs on gene expression and indicate that destabilization of target mRNAs is the predominant reason for reduced protein output.National Institutes of Health (U.S.

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    PLoS One

    Get PDF
    P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. Pbodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function
    corecore