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In this work the inception and development of multiple necks in dynamically expanded
ductile rings with ab initio geometric imperfections has been addressed. Finite element
simulations and linear perturbation analysis have been applied for that task. In the numer-
ical calculations a selected wavelength is included into the model defining along the cir-
cumference of the ring an array of periodic geometric imperfections of predefined
amplitude. In the stability analysis a perturbation of a given mode is added to the back-
ground solution and the growth rate of the perturbation is evaluated. The attention has
been focused on the extinction of both long and short wavelength imperfections and the
appearance of a dominant necking pattern which emerges when the geometric imperfec-
tions are vanished. The role played by the loading rate on the extinction of imperfections
is also addressed. Moreover, the necking strain is found to be dependent on the imperfec-
tion pattern and the loading rate. Its maximum value is registered for the loading cases in
which the initial imperfections distribution is completely extinguished.
1. Introduction complications resulting from wave propagation are elimi-
nated due to the symmetry of the problem, which facili-
Multiple necking and fragmentation occurring in duc-
tile materials subjected to high loading rates have at-
tracted the interest of researchers over the years. This
material failure mode is observed in engineering applica-
tions like ballistic impact, car crashes, blast protection or
orbital debris impact on spacecraft structures.

In the last decades a number of laboratories have devel-
oped specific experimental arrangements with the aim of
characterizing dynamic necking and fragmentation of sol-
ids. Most of these experimental configurations rely on
the radial expansion of axially symmetric structures like
rings (Niordson, 1965; Grady and Benson, 1983; Gourdin,
1989; Altynova et al., 1996; Grady and Olsen, 2003; Zhang
and Ravi-Chandar, 2006; Janiszewski, 2012), tubes (Mott,
1947; Wesenberg and Sagartz, 1977; Goto et al., 2008;
Hiroe et al., 2008; Zhang and Ravi-Chandar, 2010) and
hemispheres (Juanicotena, 1998; Mercier et al., 2010) since
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tates the interpretation of the experimental findings. In
these tests the material stretches during loading until
homogeneous deformation fails at large strain, leading to
flow localization in the form of multiple necking and sub-
sequent fragmentation. Within the typical range of loading
velocities attained in these tests, tipically from 50 to
300 m/s, the experimental results show that the strain to
failure of ductile materials is enhanced by the expansion
velocity (Hu and Daehn, 1996; Altynova et al., 1996; Janis-
zewski, 2012). The failure pattern is revealed velocity
dependent too, leading to an increasing number of necks
and fragments with testing velocity (Grady and Benson,
1983; Zhang and Ravi-Chandar, 2006).

Beside his famous experiments, Mott (1947) opened the
theoretical field of modelling multiple necking and frag-
mentation processes. Mott postulated that fragmentation
proceeds through the random spatial and temporal occur-
rence of fractures resulting in a distribution of fragment
lengths. The fragment size distribution was related to the
statistical variability in the failure strain of the material
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and was obtained through an estimate of the propagation of geometric, material and loading parameters. Within the
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2. Three dimensional finite element modeling
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the release waves from each fracture event. The pioneering
work of Mott (1947) have received continuous attention
over the years and a number of publications have attempted
to provide further validation to the statistics-based theory
(Zhang et al., 1999; Elek and Jaramaz, 2005; Elek and Jar-
amaz, 2008). Within this framework, it is worth noting the
works of Grady and co-workers (Grady, 1981; Kipp and Gra-
dy, 1985; Grady and Olsen, 2003) who extended the original
developments of Mott to provide explicit expressions for the
time to fracture and the fracture strain.

Bifurcation and stability analyses have also been con-
ducted to model multiple necking and fragmentation. The
starting point was the pioneering work of Hill and Hutch-
inson (1975) who developed a quasi-static bifurcation
analysis for a rectangular plate strained under plane strain
tension. They reported that if inertia effects are neglected,
short wavelength modes could not be developed and long
wavelength modes were boosted. Somewhat later, in a ser-
ies of celebrated papers, Molinari and co-workers (Fressen-
geas and Molinari, 1994; Mercier and Molinari, 2003;
Mercier and Molinari, 2004) provided further verification
to previous idea and showed that the multiaxial character
of the stress state in a necked region has a damping effect
on short wavelength modes. Furthermore, they revealed
the damping effect of inertia on long wavelength modes
(Fressengeas and Molinari, 1985, 1994). This was later con-
firmed in the works due to Sørensen and Freund (1998)
and Shenoy and Freund (1999). It was concluded that short
wavelengths are stabilized by stress multiaxiality effects
and long wavelengths by inertia, promoting an intermedi-
ate wavelength which determines the spacing between
localization points in the multiple necking process (Mer-
cier and Molinari, 2003; Mercier and Molinari, 2004; Zhou
et al., 2006; Vadillo et al., 2012).

Further advances in understanding the mechanisms
which reside behind multiple necking and fragmentation
processes were made with the advent of computational
mechanics. Han and Tvergaard (1995) conducted finite ele-
ment simulations of the ring expansion problem. A number
of long wavelength geometric imperfections were distrib-
uted along the circumference of the ring for triggering
the inception of necks. The authors reported that multiple
necking occurred in the simulations, being the final pattern
of necks largely independent of the location of the initial
imperfections, when their amplitudes were small enough.
Moreover, Tuğcu (1996) analysed via numerical simula-
tions the dynamic response of cylindrical shells subjected
to internal pressure. The necks inception was triggered
by imposing geometric imperfections of two different
mode shapes on the initial state. After evaluation of the
growth rate of the deformation mode it was concluded that
the mode with the shorter wavelength developed sooner
and faster than the one with the larger wavelength. In a
posterior work, Tuğcu (2003) provided deeper insight in
the numerical simulation of the dynamic expansion of
cylindrical shells. A single long wavelength imperfection
was prescribed along the circumference of the shell. It
was reported that, alternatively, localization at the initial
imperfection site or multiple necking may be generated.
The result depending on the current combination of
omputational works devoted to the role played by geo-
etric imperfections on necking inception, the paper due

o Sørensen and Freund (2000) has to be highlighted. The
uthors performed FE analysis of thin rings at high radial
ate expansion specifically addressing the influence of the
mperfection wavelength on multiple necking formation.
t was reported that long wavelength imperfections did
ot act as neck precursor sites. Instead, a critical, nearly
eriodic mode with short wavelength appears at rather

arge overall strain levels. Neck spacing was seen to have
ittle correlation with the initial imperfections. Thus, the

orks by Han and Tvergaard (1995), Tuğcu (1996, 2003)
nd Sørensen and Freund (2000) provided verification via
nite elements of the role played by inertia in damping

ong wavelength imperfections; which fully agrees with
he observations yielded from the stability analyses afore-

entioned in previous paragraph. Thus, progress in
omputational mechanics have allowed a better under-
tanding of multiple necking and fragmentation processes
ccurring in ductile materials subjected to dynamic load-

ngs. However, there is a number of issues that need fur-
her numerical investigations, the following are
ddressed in this paper:

� In agreement with stability analyses results, finite ele-
ment computations show that inertia extinguishes
sufficiently long wavelength imperfections. So, in agree-
ment with stability analyses results, may finite element
computations corroborate that stress multiaxiality
effects extinguish sufficiently short wavelength
imperfections?
� If this is so, does the loading velocity play a role on the

process of extinction? Furthermore, does the loading
velocity affect the imperfection wavelengths that are
suppressed by inertia and stress multiaxiality effects?
� Moreover, is the necking strain of the material affected

by the presence of imperfections? If this is so, does the
necking strain affect the imperfection wavelengths that
are suppressed by inertia and stress multiaxiality
effects?

n this work, the previous issues are approached relaying
n 3D finite element simulations of the ring expansion
roblem. A selected wavelength is included into the model
efining along the circumference of the ring an array of
eriodic geometric imperfections of predefined amplitude.
hen, numerical computations are conducted over wide
anges of loading rates and imperfection wavelengths in
rder to demonstrate that both sufficiently short and long
avelengths can be suppressed by the stabilizing effects of

tress multiaxiality and inertia. Then, the effects of imper-
ection geometry, loading rate and necking strain in the
rocess of extinction are analysed. The results are further
ationalized relying on a linear stability analysis.
Similarly to Rusinek and Zaera (2007) a Lagrangian 3D
nite element model of the rapid expansion of ductile rings



has been developed. Additionally, a selected wavelength

sufficiently high velocities, the generated plastic wave it-

Table 1
Dimensions of the ring.

Rint ðmmÞ Rext ðmmÞ d ðmmÞ h ðmmÞ

15 16 10�2 or 5 � 10�2 1
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has been included into the model defining an array of
equally-spaced geometric imperfections of predefined
amplitude. For that task, a variable and periodic radial
thickness was considered in the reference configuration
(t ¼ 0). The outer radius was defined by a harmonic func-
tion and the inner radius was kept constant, similarly to
Han and Tvergaard (1995), Tuğcu (1996) and Sørensen
and Freund (2000). The domain of the ring is given in cylin-
drical coordinates by the following equations:

Rint 6 r 6 Rext �
d
2

1� cos Nhð Þð Þ

0 6 h 6 2p

� h
2
6 z 6

h
2

ð1Þ

Rint being the inner radius, Rext the maximum outer radius,
d the amplitude of the imperfection, N the number of
imperfections and h the thickness of the ring in direction
z, see Fig. 1. The wavelength of the imperfection is then de-
fined by Wimp ¼ 2pRint=N. Table 1 shows the values
adopted for these dimensions, in consonance with those
proposed by Rusinek and Zaera (2007).

The loading condition is a radial velocity, Vr , applied
on the inner surface of the ring, which remains constant
throughout the entire process (Rusinek and Zaera, 2007;
Vadillo et al., 2012; Rodríguez-Martínez et al., 2013b).
The initial condition is a radial velocity of the same value
Vðt ¼ 0Þ ¼ Vr applied to all the nodes of the model. It
should be noted that application of this initial condition
is essential in order to avoid spurious propagation of
waves through the thickness of the ring resulting from
the abrupt motion of the inner face at t ¼ 0 while the
reminder of the ring is initially at rest. Otherwise, for
Fig. 1. Mesh of a ring sector corresponding to an imperfection wave-
length (N ¼ 20). A large imperfection amplitude d has been shown in the
figure, d ¼ Rext � Rintð Þ=10, for better illustration of the geometric
perturbation.
self could induce a neck (Needleman, 1991; Xue et al.,
2008). The initial strain rate is given by _e0 ¼ Vr=Rint . Hu-
ber–Mises ideal plasticity has been assumed to describe
the material response, setting aside strain or strain rate
hardening phenomena. The parameters defining the
material behavior are representative of steel: E ¼
200 GPa; m ¼ 0:3; ry ¼ 500 MPa and q ¼ 7800 kg=m3.
This material description allows proper determination of
the mechanisms responsible for the extinction of selected
imperfection wavelengths in the radial expansion of duc-
tile rings, as it will be shown in forthcoming sections of
the paper.

The solution of the initial boundary value problem was
obtained using the ABAQUS/Explicit 6.10 (Simulia, 2010)
finite element code, well-suited to simulate high-speed,
nonlinear, transient dynamic events. The domain is
mapped to cartesian coordinates and meshed using
eight-node tri-linear brick elements with reduced integra-
tion, C3D8R in ABAQUS notation. The viscous method
available in ABAQUS/Explicit has been used to prevent
hourglass deformation modes; the scale factor used for
all hourglass stiffnesses was chosen equal to one.

A mesh convergence study has been performed; the
time evolution of different critical output variables, namely
stress, strain and necking strain, were compared against a
measure of mesh density until the results converged satis-
factorily. According to the considerations reported by Zu-
kas and Scheffer (2000) the aspect ratio of the elements
was close to 1:1:1 (� 0:2� 0:2� 0:2 mm3). This element
size also ensures 4 elements along the shortest imperfec-
tion wavelength considered in the work. In radial direction
a bias meshing factor was used to keep constant the radial-
to-hoop length ratio of the elements. Fig. 1 shows the mesh
of a ring sector corresponding to the imperfection wave-
length. The code uses an explicit scheme, the central differ-
ence operator, which is only conditionally stable, i.e. the
time step must be small enough to assure that the solution
does not grow unbounded. The stability limit for the oper-
ator is inversely proportional to the highest natural fre-
quency in the system (Plĕsek et al., 2010). Additionally a
small amount of damping is introduced by the code, reduc-
ing the stability limit to control high frequency oscillations.

The whole finite element model was defined with a
script to allow a rapid change of the imperfection wave-
length and amplitude.

3. Linear perturbation analysis

The equations governing the stretching process of the
expanding ring are derived within a quasi-1D theoretical
framework. Details of the formulation can be found in
Zhou et al. (2006) and Vadillo et al. (2012), but we present
here the main equations for completeness. The ring



expansion process is approximated to a cylindrical bar stabilized as the dimensionless parameter �L decreases,
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with cross-section radius r0, area A0 ¼ pr2
0, and length L

subjected to axial velocity. The fundamental equations of
the loading process are presented below:

@v
@X

� �
t
¼ ee _e

qA0
@v
@t

� �
X ¼ A @r

@X

� �
t þ r @A

@X

� �
t

A ¼ A0ee

ry ¼ r0

r ¼ 1þ h�1� �
lnð1þ hÞry

h ¼ 1
2 r @2r

@x2

� �
¼ 2A @2A=@x2ð Þ� @A=@xð Þ2

8pA

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

where, at time t and for any cross section of the bar, X is the
Lagrangian coordinate Xð0 6 X 6 LÞ; x is the Eulerian coor-
dinate, v the current axial velocity, r and A the current ra-
dius and cross-sectional area, respectively, and r the true
stress. Moreover e ¼ ln @x

@X

� �
t

h i
; _e ¼ @e=@tð Þ;ry is the mate-

rial yield stress and h is a geometrical parameter which
gathers the stress multiaxial effects tied to necked section
(Bridgman, 1952; Walsh, 1984; Fressengeas and Molinari,
1985). The initial and boundary conditions are
v X;0ð Þ ¼ _e0X; v 0; tð Þ ¼ 0 and v L; tð Þ ¼ _e0L. Then, the sys-
tem of Eqs. (2) has an homogeneous solution of the type
f1 ¼ v1 Xð Þ; e1 tð Þ; _e1 tð Þ;A1 tð Þ; r1 tð Þ;r1 tð Þ; h1ð ÞT which defines
the background state of the boundary value problem in ab-
sence of flow instability.

At a time t0 a perturbation of the form
dfeinX ¼ ðdv; de; d _e; dA; dr; dh; drÞT einX is superimposed to
the fundamental solution (Zhou et al., 2006; Vadillo et al.,
2012). n is the wavenumber and ðdv ; de; d _e; dA; dr; dh; drÞ
are the differences between the actual perturbed solution
and the homogeneous solution. Then, at a time t > t0 the
perturbed solution of the aforementioned system of equa-
tions has the form f ¼ f1 þ dfeinXþg t�t0ð Þ where g is the per-
turbation grow rate. By substituting previous expression
into Eq. (2) and keeping only the first-order terms, a linear
homogeneous system to obtain df is derived.

A non-trivial solution for df can be found if the determi-
nant of the coefficient matrix of the system of algebraic lin-
ear equations is equal to zero. This leads to the following
quadratic expression in g

g2 þ _e1ðt0Þgþ
n2

q0
e�2e1ðt0Þ r1ðt0Þ

A0e�3e1ðt0Þ

8p
n2 � 1

� �� 	
¼ 0

ð3Þ

At this point, the following dimensionless variables are
introduced (Zhou et al., 2006)

�g ¼ g
_e1

�n ¼ r0n �L ¼
ffiffiffiffiffiffiffiffiffiffiffi
r0=q

p
r0 _e1

ð4Þ

where �g is the dimensionless perturbation growth, �n is the
dimensionless wavenumber and �L is a dimensionless
parameter such that 1=�L2 represents the inertial resistance
to motion. It should be noted that inertia accounts for the
intrinsic effects that material density, sample dimensions,
flow stress level and loading rate all have on necking
inception as described elsewhere (Knoche and Needleman,
1993; Mercier and Molinari, 2003; Mercier and Molinari,
2004; Vadillo et al., 2012). The material behaviour is
elaying the formation and development of necks.
Then, with application of the dimensionless variables,

q. (3) takes the following form

2 þ �gþ �L2K2�n2 K3
�n2

8
� 1

� �
¼ 0 ð5Þ

here K ¼ e�e1ðt0Þ.
In generalized form, the condition for the perturbation

rowth is �n < 2
K

ffiffiffi
2
K

q
. If this condition is fulfilled the pertur-

ation growth is defined by

þ ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�L2K2�n2 1�K3 �n2

8

� �r

2
ð6Þ

he perturbation growth is assumed to represent the onset
f diffuse necking, the very first stages in which the plastic
ow deviates from the background deformation. Note that,

n contrast with the FE model, here the perturbation is not
epresentative of any particular geometric entity but it ac-
ounts for any lack of homogeneity existing in the vari-
bles of the problem which may lead to flow localization.

. Analysis and results

Results of the finite element computations and stability
nalysis are presented. Following the terminology of
ørensen and Freund (2000) the necking process will be
escribed as stable if a single neck forms in each site where
he wall thickness is minimum. On the other hand, the
ecking process will be described as unstable if necks form
t sites other than the locations of minimum wall thick-
ess. Note that numerical calculations are run within wide
anges of loading rates 667 s�1

6 _e0 6 66667 s�1, corre-
ponding to 10 m=s 6 Vr 6 1000 m=s.

.1. The effect of imperfection geometry on necking formation

According to Eq. (1), the imperfection geometry is de-
ned through the parameters N – number of imperfections
and d – amplitude of the imperfection. In this section, the

nfluence of each of them on the multiple necking process
ill be considered separately.

.1.1. The effect of imperfection spacing
Fig. 2(a) illustrates the number of necks formed as a

unction of the number of initial imperfections in numeri-
al computations carried out at _e0 ¼ 33333 s�1 for d ¼ 1%.
he attention will be focussed on the interplay between
he number of imperfections introduced in the FE model

and the number of necks incepted n. Three main situa-
ions can be identified:

� Region I – Long imperfection wavelengths: the number
of necks incepted is independent of the imperfections
spacing and a dominant necking pattern insensitive to
the geometric perturbations is identified as shown in
Fig. 2(a). At the onset of loading, non-localized excur-
sions of strain appear at the sites of the minimum wall
thickness growing at rates comparable to the rate of the
background deformation as illustrated in Fig. 3(a),



where the equivalent plastic strain �ep is depicted upon
�

stages of loading, localized necks (equally-spaced and

(a)

(b)
Fig. 2. Finite element results. Number of necks n as a function of the number of imperfections N for _e0 ¼ 33333 s�1 and two different imperfection
amplitudes. (a) d ¼ 1%, (b) d ¼ 5%.
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(half) of the normalized ring perimeter P. Later in the
deformation, a cascade of (almost) equally-spaced
localized necks – so called because further deformation
of the ring concentrates in these localized regions – are
formed (practically) simultaneously all along the ring as
shown in Fig. 3(a). The locations of these necks do not
correlate with the initial imperfections distribution,
i.e. the necking process is unstable. Region I is con-
trolled by the stabilizing effect that inertia has on long
wavelength perturbations as reported by Fressengeas
and Molinari (1985).
� Region II – Intermediate imperfection wavelengths:

each geometric imperfection leads to the nucleation of
a single neck as illustrated in Fig. 2(a). At very early
equally-intense) appear at the sites of the minimum
wall thickness growing at much faster rates than that
of the background deformation as can be observed in
Fig. 3(b). The necking process is stable. Region II is char-
acterized by the enhancing effect that intermediate
wavelengths have on necking inception as reported by
Mercier and Molinari (2003), Mercier and Molinari
(2004).
� Region III – Short imperfection wavelengths: the num-

ber of necks incepted is independent of the imperfec-
tions spacing and a dominant necking pattern
insensitive to the geometric perturbations is identified
as illustrated Fig. 2(a). The process of necking nucle-
ation is analogous to that described for region I; at the



(a)

(b)

(c)
Fig. 3. Finite element results. Equivalent plastic strain ��p along (half) the normalized perimeter of the ring �P for _e0 ¼ 33333 s�1 and d ¼ 1%. (a) Region I: 4
imperfections, (b) region II: 35 imperfections, (c) region III: 120 imperfections.
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onset of loading non-localized excursions of strain However, such increase of the stress multiaxiality effects
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appear at the sites of the minimum wall thickness
growing at rates comparable to the rate of the back-
ground deformation as reported in Fig. 3(c). As defor-
mation proceeds, an array of (almost) equally-spaced
localized necks are formed (almost) simultaneously all
along the circumference. The number of necks nucle-
ated coincides with that registered in region I. The loca-
tions of these necks do not correlate with the initial
imperfections distribution, i.e. the necking process is
unstable. Region III is controlled by the stabilizing effect
that stress multiaxiality has on short wavelength per-
turbations as reported by Zhou et al. (2006).

This analysis reveals that for sufficiently long/short wave-
lengths the stabilizing effect of inertia/stress multiaxiality
completely vanishes the effect of geometric imperfections.
Such behaviour reveals a dominant necking pattern which
characterizes the loading process.

Furthermore, it should be noted that transition zones be-
tween regions I, II and III can be identified in Fig. 2(a).
These are zones in which the necking process can not be
strictly defined as stable or unstable. Within these transi-
tion zones the loading process involves formation of necks
of both types. Neither the number of necks incepted is
independent of the imperfections distribution nor the
number of necks incepted coincides with the number of
imperfections.

� Transition zone I: corresponds to a situation between
regions I and II, see Fig. 2(a). Localized excursions of
strain appear in the locations in which the ring wall is
initially thinnest. However, as deformation proceeds
multiple necks appear in these locations leading to a
non-uniform neck spacing as illustrated in Fig. 4(a). In
the transition zone I the geometrical imperfections are
only partially damped by the stabilizing effect of inertia.
� Transition zone II: corresponds to a situation between

regions II and III, see Fig. 2(a). Most necks appear in
the locations in which the ring wall is initially thinnest,
however some other do not. The neck spacing is not
uniform as illustrated Fig. 4(b). In the transition zone
II the geometrical imperfections are only partially
damped by the stabilizing effect of stress multiaxiality.

4.1.2. The effect of imperfection amplitude
Next, the effect of imperfection amplitude on the neck-

ing process is addressed. Fig. 2 shows the number of necks
formed as a function of the number of initial imperfections
in numerical computations conducted for _e0 ¼ 33333 s�1

and two different imperfection amplitudes, d ¼ 1% in
Fig. 2(a) and d ¼ 5% in Fig. 2(b). Increasing imperfection
amplitude decreases the number of imperfections which
determine the lower bound of region II and increases the
number of imperfections which determines the upper
bound of region II, extending the range for which the
imperfections distribution leads to stable necking process.
In other words, increasing imperfection amplitude hinders
overcoming of geometrical perturbations by inertia and
stress multiaxiality. Note that as the imperfection
amplitude increases the hydrostatic pressure does also.
(stabilizing effect) seems to be cancelled due the enhanced
stress concentration (destabilizing effect) caused by the
associated cross section reduction.

4.2. The effect of loading rate on necking formation

Next, the effect of loading rate on the necking process is
addressed. The results shown in Fig. 5 illustrate the num-
ber of necks n formed as a function of the number of initial
imperfections N, for d ¼ 1%. The numerical computations
are carried out at two different initial loading rates:
_e0 ¼ 16667 s�1 and _e0 ¼ 66667 s�1, below and above that
considered in Fig. 2(a) respectively. Comparing Fig. 5 with
Fig. 2(a) a main effect can be identified: as the loading
velocity increases region II is moved to shorter imperfec-
tion spacings; its lower and upper bounds both are shifted
to larger number of imperfections.

A rational explanation to this finding is provided relying
on finite element calculations (to determine the influence
of loading rate on the necking inception) and linear stabil-
ity analysis (to understand the mechanisms responsible for
the shifting of region II as the loading rate increases).

4.2.1. Finite element results
The localized necking strain �ep

neck has been determined
in finite element computations conducted for different
loading rates and imperfection spacings. Following Trian-
tafyllidis and Waldenmyer (2004), Xue et al. (2008) and
Rodríguez-Martínez et al. (2013b), Rodríguez-Martínez
et al. (2013a), the localized necking strain �ep

neck is assumed
as determined by the condition d�ep

dt ¼ 0, where �ep is the
equivalent plastic strain measured within the unloading
zone which surrounds the necks and t refers to time, as
shown in Fig. 6. Note that the neck spacing Wneck may
not coincide in certain loading cases with the imperfection
spacing Wimp.

Fig. 7 illustrates the localized necking strain upon the
number of imperfections for different loading rates. It can
be observed that �ep

neck increases with loading rate (Fyfe
and Rajendran, 1980; Grady and Benson, 1983; Knoche
and Needleman, 1993; Hu and Daehn, 1996), regardless
the number of imperfections introduced in the FE model.
It is worth noting that the curves �ep

neck versus N display a
characteristic shape independently of the loading velocity.
Based on this curve-shape, regions I, II and III can be iden-
tified. For that task, the attention is focused on the results
corresponding to _e0 ¼ 16667 s�1:

� Region I is defined by the largely constant values of �ep
neck

measured within the range N K 6, see the agreement
with Fig. 5(a). The range of imperfections for which
�ep

neck keeps constant increases with loading rate.
� Region II is defined by the concave up shape displayed

by the results measured within the range 6 K N K 60,
see the agreement with Fig. 5(a). The decrease of �ep

neck

corresponds to loading cases for which the necking pro-
cess is stable (n ¼ N) but the number of imperfections is
lower than the number of necks defined by the domi-
nant necking pattern. The minimum value of �ep

neck is clo-
sely related to the number of imperfections which



coincides with the dominant necking pattern. This necking strain is hardly achieved for the larger values
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(a)

(b)
Fig. 4. Finite element results. Equivalent plastic strain ��p along (half) the normalized perimeter of the ring �P for _e0 ¼ 33333 s�1 and d ¼ 1%. (a) Transition
zone I: 12 imperfections, (b) Transition zone II: 88 imperfections.
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agrees with the considerations reported by Rodríguez-
Martínez et al. (2013b) who correlated the dominant
necking pattern with the minimum investment of
energy required for the necking formation. The increase
of �ep

neck corresponds to loading cases for which the neck-
ing process is stable but the number of imperfections
exceeds that determined by the dominant necking
pattern.
� Region III is defined by the largely constant values of

�ep
neck measured within the range N J 60, see the agree-

ment with Fig. 5(a). Note that the range of imperfec-
tions for which �ep

neck keeps constant decreases with
loading velocity. In fact, for the largest loading rate
considered _e0 ¼ 66667 s�1, such constancy of the
of imperfections considered, N J 130, as depicted in
Fig. 5(b).

.2.2. Linear stability results
The linear stability analysis permits to evaluate the

imensionless perturbation growth �gþ upon the number
f imperfections N for different background strains e1 and

oading rates _e0, according to Eq. (6). Note that the number
f periodic imperfections N is related to the dimensionless
avenumber �n through N ¼ 2�nRint=h, where h is used to

esignate indifferently the width of the (almost) square
ross-section in the 3D simulations or the diameter of
he circular-cross section in the stability analysis.



Fig. 8 shows that, for a given value of the background
strain, as the loading rate increases the perturbation

Fig. 8 also shows that, for a given value of the loading rate,
as the background strain increases the promotion of short-

(a)

(b)
Fig. 5. Finite element results. Number of necks n as a function of the number of imperfections N for d ¼ 1% and two different initial strain rates. (a)
_e0 ¼ 16667 s�1, (b) _e0 ¼ 66667 s�1.

Fig. 6. Schematic representation of a necked zone showing the measure-
ment point used for determination of the localized necking condition
d�ep

dt ¼ 0 in the finite element computations.
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growth is slowed down for any wavenumber considered.
er wavelengths is favoured. However, note that a proper
analysis cannot consider the effect of background strain
and strain rate separately. According to the finite element
results, the loading rate increase is accompanied by the
localized necking strain increase. Then, it can be assumed
that as the loading rate increases the onset of instability
in the perturbation analysis – although this does not refer
to the localized necking strain but to the diffuse necking
strain as previously discussed – should also do. This sug-
gest that a proper evaluation of the effect of loading rate
on necking formation needs to jointly consider the damp-
ing effect of inertia on long wavelengths (with increasing
loading rate), and the promotion of shorter wavelengths
when the onset of instability is delayed (with increasing



loading rate); both effects are shown in Fig. 8. In conso- of the stability analysis which cause this disagreement:
(
t
p
(
d
l
i

4.3. Remarks: coupled imperfection-spacing/loading-rate
analysis

l
s
n

Fig. 7. Finite element results. Localized necking strain �ep
neck upon the number of periodic imperfections N for d ¼ 1% and four different loading rates:

_e0 ¼ 8333 s�1, _e0 ¼ 16667 s�1; _e0 ¼ 33333 s�1 and _e0 ¼ 66667 s�1.

Fig. 8. Perturbation analysis results. Dimensionless perturbation growth �gþ upon the number of periodic imperfections N for two different loading rates
( _e0 ¼ 16667 s�1; _e0 ¼ 66667 s�1) and two different background strains (e1 ¼ 0:1; e1 ¼ 0:4).
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nance with Fig. 5 the upper bound of region I is shifted
to shorter imperfections spacing with increasing loading
rate since, as loading rate increases, the range of imperfec-
tion wavelengths that are damped by inertia is larger. Sim-
ilarly, the lower bound of region III is shifted to shorter
imperfections spacing with increasing loading rate since
inertia delays the onset of necking and this promotes
shorter wavelengths.

Moreover, the linear stability analysis predicts an in-
crease in the dominant wavenumber with increasing
loading velocity caused by its associated increase in the
onset of the instability – background strain, as shown
in Fig. 8. This behaviour agrees with the numerical com-
putations results. However, the stability analysis does
not capture the exact value of the dominant necking pat-
tern predicted by the FE results. Two are the limitations
1) the wave propagation mechanisms which, below cer-
ain loading rates, play a role on the multiple necking
rocess are not considered, see Mercier and Molinari
2004) and Rodríguez-Martínez et al. (2013b) for further
etails; (2) the uncertainty in the background strain va-

ue used to define the onset of instability (diffuse neck-
ng strain).
Previous results suggest that extinction of long wave-
engths is favoured at high velocities and extinction of
hort wavelengths at low. This idea is reinforced by the fi-
ite element results shown in Fig. 9. This graph shows the



dimensionless neck spacing Wneck=h as a function of the as the short imperfection spacing configuration. Within

Fig. 9. Finite element results. Dimensionless neck spacing Wneck=h as a function of the initial loading rate _e0 for three different numerical configurations: No
imperfection (d ¼ 0%), imperfection spacing Wimp=h ¼ 9:42 (d ¼ 1%) and imperfection spacing Wimp=h ¼ 2:69 (d ¼ 1%).
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initial loading rate _e0 for three different configurations:

1. Configuration A: No imperfection is introduced in the
FE model. The localization is triggered by the numerical
round-off which is sufficient to perturb the stress and
strain fields (Rusinek and Zaera, 2007; Vadillo et al.,
2012; Rodríguez-Martínez et al., 2013b). The necking
pattern is rate dependent and shows deterministic nat-
ure. It should be noted that, with increasing loading
rate, the dimensionless neck spacing Wneck=h tends
asymptotically to Wneck=h � 1:5. This value was identi-
fied by Rodríguez-Martínez et al. (2013b) as the critical
wavelength which dictates the neck spacing in ductile
rings expanded at very high strain rates. This critical
wavelength was shown to be quite independent of the
material properties but closely related to material
inertia.

2. Configuration B: 10 imperfections are introduced in the
FE model. This corresponds to an initial imperfection
spacing Wimp=h ¼ 9:42. Let us denote this configuration
as the long imperfection spacing configuration. Within
the range of loading rates _e0 K 10000 s�1 the neck spac-
ing coincides with the imperfection spacing. Inertia
effects are not high enough to overcome the long wave-
length imperfections, the necking process is stable.
Within the range 10000 s�1 K _e0 K 30000 s�1 neither
the neck spacing coincides with the imperfections spac-
ing nor the neck spacing coincides with the results of
configuration A. Inertia only partially damps the long
wavelength imperfections. Within the range
_e0 J 30000 s�1 the neck spacing agrees with the results
obtained for configuration A. Inertia completely van-
ishes the effect of the imperfections distribution, the
necking process is unstable.

3. Configuration C: 35 imperfections are introduced in the
FE model. This corresponds to an initial imperfection
spacing Wimp=h ¼ 2:69. Let us denote this configuration
the range of loading rates _e0 K 3000 s�1 the neck spac-
ing coincides with the results obtained for configura-
tion A. Stress multiaxiality effects completely vanish
the imperfections distribution, the necking process is
unstable. Within the range of loading velocities
3000 s�1 K _e0 K 7000 s�1 neither the neck spacing
matches with the imperfections spacing nor the neck
spacing coincides with the results of configuration A.
Within the range _e0 J 7000 s�1 the neck spacing agrees
with the imperfections spacing. Stress multiaxiality
effects do not overcome the short wavelength imperfec-
tions, the necking process is stable.

5. Discussion

This paper examines the effects that inertia and stress
multiaxiality have on the evolution of periodic geometric
imperfections and necking inception in dynamically
expanding ductile rings. In particular, the investigation
has been focussed on demonstrating via finite element
simulations and rationalizing via a linear stability analysis
that inertia and stress multiaxiality can lead to the com-
plete extinction of selected imperfection wavelengths. This
is the main innovative feature of this work and provides
further verification to the analytical considerations re-
ported elsewhere (Fressengeas and Molinari, 1985; Fres-
sengeas and Molinari, 1994; Shenoy and Freund, 1999;
Mercier and Molinari, 2003; Mercier and Molinari, 2004).
The main results of this investigation are schematically
illustrated in Fig. 10, where NII

I denotes the number of
imperfections which defines the transition between re-
gions I and II, Ndom defines the number of imperfections
which coincides with the number of necks determining
the dominant necking pattern and NIII

II denotes the number
of imperfections which defines the transition between re-
gions II and III – note that the transition zones between re-
gions where the necking process is partially stable and



partially unstable are not included in the schematic varies with the number of imperfections introduced in
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representation.
If N 6 NII

I the geometric imperfections introduced in the
model do not act as neck precursor sites since they are
completely suppressed due to inertia effects, Fig. 10(a).
This behaviour gives way to the inception of an array of
strain localization points whose distribution agrees with
the necking pattern observed in absence of geometric
imperfections. This necking pattern is deterministic and
shows direct relation with the loading rate. Within this
range of imperfection spacings, the localized necking strain
�ep

neck keeps largely constant (Fig. 10(b)). The value of NII
I in-

creases with loading velocity due to the proportional rela-
tion between strain rate and inertia. The value of NII

I

decreases with increasing imperfection amplitude due to
the enhanced stress concentration caused by the associ-
ated cross section reduction (geometrical softening) which
hinders the overcoming of the imperfections by inertia
effects.

If NII
I 6 N 6 NIII

II the number of necks incepted coincides
with the number of imperfections introduced in the model,
Fig. 10(a). Furthermore, each imperfection leads to the
nucleation of a single neck. Within this range of imperfec-
tions spacing, the localized necking strain �ep

neck largely
o
h
m
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(a)

(b)
Fig. 10. Representative schemes. (a) Number of necks n upon the number
of imperfections N. (b) Localized necking strain �ep

neck upon the number of
imperfections N.

F
g
(

he model (Fig. 10(b)). Namely, �ep
neck decreases with N for

mperfection spacings larger than that defined by the dom-
nant necking pattern and increases with N for imperfec-
ion spacings smaller than that defined by the dominant
ecking pattern. The number of imperfections which
atches with the dominant necking pattern determines

he minimum value of �ep
neck, i.e. the minimum investment

f energy required for necking formation.
If N P NIII

II the geometric imperfections introduced in
he model do not act as neck precursor sites since they
re completely extinguished due to stress multiaxiality ef-
ects, Fig. 10(a). This behaviour gives way to the inception
f an array of strain localization points whose distribution
grees with the necking pattern observed in absence of
eometric imperfections. Within this range of imperfection
pacings the localized necking strain �ep

neck keeps largely
onstant (Fig. 10(b)). The value of NIII

II increases with load-
ng velocity since strain rate retards necking formation

hich promotes the development of shorter wavelengths
s shown schematically in Fig. 11. The value of NIII

II in-
reases with increasing imperfection amplitude due to
he enhanced stress concentration caused by the associ-
ted cross section reduction which hinders the overcoming
f the imperfections by stress multiaxiality effects. The dis-
ussed effect of loading rate in the variation of the position
f NII

I and NIII
II (moving both lower and upper bounds to

igher values of N with increasing _e0) is represented sche-
atically in Fig. 12.
Fig. 12 also shows the role played by loading velocity on

he number of necks incepted for three different imperfec-
ion spacings. These imperfection spacings are assumed
nalogous to those discussed in Fig. 9. For a material with-
ut geometrical imperfections, the necking spacing is coin-
ident with the dominant one and decreases with loading
ate. Considering the longer imperfection wavelength, the
eck spacing matches the imperfection spacing for the

ower loading rate _e0ð1Þ and coincides with the dominant
pacing for the higher _e0ð2Þ. Considering the short imperfec-
ion wavelength, the neck spacing matches the dominant
pacing for the lower loading rate _e0ð1Þ and coincides with
he imperfection spacing for the higher _e0ð2Þ; being this
eck spacing larger than that determined by the dominant
ne in agreement with Fig. 9.
ig. 11. Schematic representation of the dimensionless perturbation
rowth �gþ upon the number of imperfections N for increasing velocity
taking into account the associated increase in background strain).



6. Concluding remarks

The authors express sincere gratitude to Professor Alain

Fig. 12. Representative scheme: Number of necks n as a function of
number of imperfections N for two different initial loading rates _e0.
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From this analysis emerges a direct connection between
geometric imperfections, loading velocity and necking
strain which determines the multiple necking formation
in ductile rings expanded at high strain rates.
Understanding of this relationship has main importance
since the presence of manufacturing or material defects
in the form of surface or geometric imperfections is
inherent to any structural element. The main conclusions
are as follows:

1. In agreement with stability analyses, finite element
computations corroborate that sufficiently long wave-
length imperfections are completely suppressed by
inertia and sufficiently short wavelength imperfections
are completely suppressed by stress multiaxiality
effects.

2. It has been demonstrated that the loading velocity plays
a major role on the extinction of imperfection wave-
lengths. Namely, the extinction of long imperfection
wavelengths is favoured at high loading velocities and
extinction of short imperfection wavelengths at low.
These results have been rationalized based on a linear
stability analysis.

3. It has been shown that the necking strain, the reference
variable in determining the capacity of ductile materials
for absorbing energy under dynamic loadings, is highly
dependent on the imperfections pattern. In particular, it
has been detected that the maximum necking strain is
registered for the loading cases in which the imperfec-
tions distribution is completely extinguished either by
inertia or stress multiaxiality effects. Furthermore,
there exists a dominant necking pattern which emerges
when the geometric imperfections are vanished. This
dominant neck spacing shows direct relation with the
loading rate.
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