14 research outputs found

    Domestic well vulnerability to drought duration and unsustainable groundwater management in California's Central Valley

    Get PDF
    Millions of Californians access drinking water via domestic wells, which are vulnerable to drought and unsustainable groundwater management. Groundwater overdraft and the possibility of longer drought duration under climate change threatens domestic well reliability, yet we lack tools to assess the impact of such events. Here, we leverage 943 469 well completion reports and 20 years of groundwater elevation data to develop a spatially-explicit domestic well failure model covering California's Central Valley. Our model successfully reproduces the spatial distribution of observed domestic well failures during the severe 2012-2016 drought (n = 2027). Next, the impact of longer drought duration (5-8 years) on domestic well failure is evaluated, indicating that if the 2012-2016 drought would have continued into a 6 to 8 year long drought, a total of 4037-5460 to 6538-8056 wells would fail. The same drought duration scenarios with an intervening wet winter in 2017 lead to an average of 498 and 738 fewer well failures. Additionally, we map vulnerable wells at high failure risk and find that they align with clusters of predicted well failures. Lastly, we evaluate how the timing and implementation of different projected groundwater management regimes impact groundwater levels and thus domestic well failure. When historic overdraft persists until 2040, domestic well failures range from 5966 to 10 466 (depending on the historic period considered). When sustainability is achieved progressively between 2020 and 2040, well failures range from 3677 to 6943, and from 1516 to 2513 when groundwater is not allowed to decline after 2020

    Design and assessment of an efficient and equitable dynamic urban water tariff. Application to the city of Valencia, Spain

    Get PDF
    Water pricing policies have a large and still relatively untapped potential to foster more efficient management of water resources in scarcity situations. This work contributes a framework for designing equitable, financially stable and economically efficient urban water tariffs. A hydroeconomic simulation model links the marginal value of water, which reflects water scarcity given its competing uses, to water supply reservoir levels. Varying reservoir levels trigger variations in the second block of the proposed two-block increasing-rate tariff; these variations then reflect water's value at that time. The work contrasts the two-block scarcity tariff with a constant volumetric rate for the city of Valencia, Spain, and the drought-prone Jucar basin, where most of 430,000 households are equipped with smart meters. Results show urban consumption is reduced by 18% in the driest years, lowering basin-wide scarcity costs by 34%

    Economics of Water Security

    Get PDF
    In the immediate future, accessible runoff of fresh water is unlikely to increase more than the demand forecasted. It will have an impact on economic growth as it may reduce the per capita income of countries and create water conflicts. Such global threat creates a policy conundrum of how to meet basic needs and maximise the benefits from water resources. This chapter investigates different economic instruments in alleviating water-related risks and dealt with associated impacts.Anik Bhaduri, C. Dionisio Pérez-Blanco, Dolores Rey, Sayed Iftekhar, Aditya Kaushik, Alvar Escriva-Bou, Javier Calatrava, David Adamson, Sara Palomo-Hierro, Kelly Jones, Heidi Asbjornsen, Mónica A. Altamirano, Elena Lopez-Gunn, Maksym Polyakov, Mahsa Motlagh, and Maksud Bekchano

    ‘Sub-Prime’ Water, Low-Security Entitlements and Policy Challenges in Over-Allocated River Basins: the Case of the Murray–Darling Basin

    Get PDF
    Environmental policy is often implemented using market instruments. In some cases, including carbon taxing, the links between financial products and the environmental objectives, are transparent. In other cases, including water markets, the links are less transparent. In Australia’s Murray–Darling Basin (MDB), financial water products are known as ‘entitlements’, and are similar to traditional financial products, such as shares. The Australian water market includes ‘Low Security’ entitlements, which are similar to ‘sub-prime’ mortgage bonds because they are unlikely to yield an amount equal to their financial worth. Nearly half the water purchased under the Murray–Darling Basin Plan for environmental purposes is ‘Low Security’. We suggest that the current portfolio of water held by the Australian Government for environmental purposes reflects the mortgage market in the lead-up to the global financial crisis. Banks assumed that the future value of the mortgage market would reflect past trends. Similarly, it is assumed that the future value of water products will reflect past trends, without considering climate change. Historic records of allocations to ‘Low Security’ entitlements in the MDB suggest that, in the context of climate change, the Basin Plan water portfolio may fall short of the target annual average yield of 2075 GL by 511 GL. We recommend adopting finance sector methods including ‘hedging’ ‘Low Security’ entitlements by purchasing an additional 322–2755 GL of ‘Low Security’, or 160–511 GL of ‘High Security’ entitlements. Securing reliable environmental water is a global problem. Finance economics present opportunities for increasing the reliability of environmental flows

    Role of economic instruments in water allocation reform: lessons from Europe

    No full text
    A growing number of countries are reforming their water allocation regimes through the use of economic instruments. This article analyzes the performance of economic instruments in water allocation reforms compared against their original design objectives in five European countries: England, France, Italy, Spain and the Netherlands. We identify the strengths of, barriers to and unintended consequences of economic instruments in the varying socio-economic, legal, institutional and biophysical context in each case study area, and use this evidence to draw out underlying common guidelines and recommendations. These lessons will help improve the effectiveness of future reforms while supporting more efficient water resources allocation
    corecore