539 research outputs found

    Shear bands in granular flow through a mixing length model

    Full text link
    We discuss the advantages and results of using a mixing-length, compressible model to account for shear banding behaviour in granular flow. We formulate a general approach based on two function of the solid fraction to be determined. Studying the vertical chute flow, we show that shear band thickness is always independent from flowrate in the quasistatic limit, for Coulomb wall boundary conditions. The effect of bin width is addressed using the functions developed by Pouliquen and coworkers, predicting a linear dependence of shear band thickness by channel width, while literature reports contrasting data. We also discuss the influence of wall roughness on shear bands. Through a Coulomb wall friction criterion we show that our model correctly predicts the effect of increasing wall roughness on the thickness of shear bands. Then a simple mixing-length approach to steady granular flows can be useful and representative of a number of original features of granular flow.Comment: submitted to EP

    Domain Wall Depinning in Random Media by AC Fields

    Get PDF
    The viscous motion of an interface driven by an ac external field of frequency omega_0 in a random medium is considered here for the first time. The velocity exhibits a smeared depinning transition showing a double hysteresis which is absent in the adiabatic case omega_0 --> 0. Using scaling arguments and an approximate renormalization group calculation we explain the main characteristics of the hysteresis loop. In the low frequency limit these can be expressed in terms of the depinning threshold and the critical exponents of the adiabatic case.Comment: 4 pages, 3 figure

    X-ray photoelectron spectroscopy for resistance-capacitance measurements of surface structures

    Get PDF
    Cataloged from PDF version of article.In x-ray photoemission measurements, differential charging causes the measured binding energy difference between the Si 2p of the oxide and the silicon substrate to vary nonlinearly as a function of the applied external do voltage stress, which controls the low-energy electrons going into and out of the sample. This nonlinear variation is similar to the system where a gold metal strip is connected to the same voltage stress through an external 10 Mohm series resistor and determined again by x-ray photoelectron spectroscopy (XPS). We utilize this functional resemblance to determine the resistance of the 4 nm SiO2 layer on a silicon substrate as 8 Mohm. In addition, by performing time-dependent XPS measurements (achieved by pulsing the voltage stress), we determine the time constant for charging/discharging of the same system as 2.0 s. Using an equivalent circuit, consisting of a gold metal strip connected through a 10 Mohm series resistor and a 56 nF parallel capacitor, and performing time-dependent XPS measurements, we also determine the time constant as 0.50 s in agreement with the expected value (0.56 s). Using this time constant and the resistance (8.0 Mohm), we can determined the capacitance of the 4 nm SiO2 layer as 250 nF in excellent agreement with the calculated value. Hence, by application of external do and pulsed voltage stresses, an x-ray photoelectron spectrometer is turned into a tool for extracting electrical parameters of surface structures in a noncontact fashion. (c) 2005 American Institute of Physics

    Melting of Flux Lines in an Alternating Parallel Current

    Full text link
    We use a Langevin equation to examine the dynamics and fluctuations of a flux line (FL) in the presence of an {\it alternating longitudinal current} J(ω)J_{\parallel}(\omega). The magnus and dissipative forces are equated to those resulting from line tension, confinement in a harmonic cage by neighboring FLs, parallel current, and noise. The resulting mean-square FL fluctuations are calculated {\it exactly}, and a Lindemann criterion is then used to obtain a nonequilibrium `phase diagram' as a function of the magnitude and frequency of J(ω)J_{\parallel}(\omega). For zero frequency, the melting temperature of the mixed phase (a lattice, or the putative "Bose" or "Bragg Glass") vanishes at a limiting current. However, for any finite frequency, there is a non-zero melting temperature.Comment: 5 pages, 1 figur

    Evaluation of Probabilistic Streamflow Forecasts Based on EPS for a Mountainous Basin in Turkey

    Get PDF
    AbstractWhen designing water structures or managing a watershed it is a challenging task to determine the response of a basin to storm and/or snowmelt. In this study, the Upper Euphrates Basin (10,275 km2 area and elevation range of 1125-3500 m) located at the headwater of Euphrates River, one of Turkey's most important rivers, is selected as the application area. In this region, snowmelt runoff constitutes approximately 2/3 in volume of the total yearly runoff, therefore, runoff modeling and forecasting during spring and early summer is important in terms of energy and water resources management. The aim of the study is to make a forward-oriented, medium-range flow forecasting using Ensemble Prediction System (EPS) which is a pioneer study for Turkey. Conceptual hydrological model HBV, which has a common usage in the literature, is chosen to predict streamflows. According to the results, Nash-Sutcliffe model efficiencies are 0.85 for calibration (2001-2008) and 0.71 for validation (2009-2014) respectively. After calibrating/validating the hydrologic model, EPS data including 51 different combinations produced by ECMWF is used as probability based weather forecasts. Melting period during March-June of 2011 is chosen as the forecast period. The probabilistic skill of EPS based hydrological model results are analyzed to verify the ensemble forecasts

    Peak effect in single crystal MgB2_2 superconductor for Hc{\bf H}\parallel c-axis

    Full text link
    We have studied the phase diagram of MgB2_2 superconductor using a single crystal for Hc{\bf H}\parallel c-axis. For the first time we report the existence of peak effect in the screening current in MgB2_{2} single crystal for Hc{\bf H}\parallel c-axis. In the magnetic field regime 10<H<13.510<H<13.5 kOe the local fundamental diamagnetic moment displays a very narrow diamagnetic step, with a temperature width of the same size as the zero dc-magnetic field transition. For higher field this step is transformed to a peak which is related with the peak effect in the screening current. Finally, for H<10H<10 kOe the diamagnetic step is transformed to a gradual transition. Our findings for the vortex matter phase diagram for the MgB2_2 are closely related with theoretical predictions concerning the vortex matter phase diagram of a type II superconductor in the presence of weak point disorder.Comment: Has been submitted for publication in PRL since 21 February 200

    Separation quality of a geometric ratchet

    Full text link
    We consider an experimentally relevant model of a geometric ratchet in which particles undergo drift and diffusive motion in a two-dimensional periodic array of obstacles, and which is used for the continuous separation of particles subject to different forces. The macroscopic drift velocity and diffusion tensor are calculated by a Monte-Carlo simulation and by a master-equation approach, using the correponding microscopic quantities and the shape of the obstacles as input. We define a measure of separation quality and investigate its dependence on the applied force and the shape of the obstacles

    A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water.

    No full text
    Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water

    Differentiation of domains in composite surface structures by charge-contrast x-ray photoelectron spectroscopy

    Get PDF
    An external bias is applied to two samples containing composite surface structures, while recording an XPS spectrum. Altering the polarity of the bias affects the extent of differential charging in domains that are chemically or electronically different to create a charge contrast. By utilizing this charge contrast, we show that two distinct silicon nitride and silicon oxynitride domains are present in one of the composite samples. Similarly, we use this technique to show that titanium oxide and silicon oxide domains exist as separate chemical entities in another composite sample. © 2007 American Chemical Society
    corecore