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Pendulum as Vibration Absorber 
for Flexible Structures: 
Experiments and Theory 
The dynamic response of a beam-tip mass-pendulum system subjected to a sinusoidal 
excitation is investigated. A simple pendulum mounted to a tip mass of a beam is 
used as a vibration absorber. The nonlinear equations of motion are developed to 
investigate the autoparametric interaction between the first two modes of the system. 
The nonlinear terms appear due to the curvature of the beam and the coupling effect 
between the beam and pendulum. Complete energy transfer between modes is shown 
to occur when the beam frequency is twice the pendulum frequency. Experimental 
results are compared with a theoretical solution obtained using numerical integration. 
The experimental results are in qualitative agreement with the theory. 

1 Introduction 

Many structures can be modeled as a continuous beam with 
concentrated mass at the end (Laura et al , 1974; Sato et al , 
1978; Verma et al , 1978; Storch and Gates, 1985; Kojima et 
al., 1985; Gurgoze, 1986; Nagewara et al., 1986; Lui and Huang, 
1988; and Zavodney and Nayfeh, 1989). Haxton and Barr 
(1972) studied a flexible column with tip-mass mounted on a 
large mass as a model for an autoparametric vibration absorber. 
Autoparametric vibration is a special case of parametric vibra­
tion said to exist when the conditions at internal resonance and 
external resonance are met simultaneously. The basic feature 
of autoparametric resonance is that the energy transfer (for 
example, in two degrees of freedom system) may occur when 
the lower mode frequency is equal to one-half the higher mode 
frequency. Due to the energy transfer, a lower mode may result 
in exponential response growth and may act as a vibration ab­
sorber to the excited mode (higher mode). Autoparametric reso­
nance has been studied by numerous authors including Tondl 
(1963), Tomas (1967), Szemplinska-Stupnica (1969), Ibrahim 
(1975), Ibrahim and Barr (1978), Haddow and Barr (1984), 
Hatwall et al. (1983a, 1983b), and others. 

In this study, a new model consisting of a flexible beam with 
a simple pendulum mounted on a tip mass as an autoparametric 
vibration absorber is presented (Fig. 1). There are many exam­
ples of vibration absorbers using the idea of mode interaction 
due to autoparametric resonance. Some of them were investi­
gated by Crossley and Conn (1953), Arnold (1955), Eugene 
(1961), Struble and Heinbockel (1963), Masri and Caughey 
(1966), Masri (1972), Haxton and Barr (1972), Hatwal 
(1982), Hunt and Nissen (1982), Nissen et al. (1985), Shaw 
and Shaw, J and S. W. (1989), Ertas and Chew (1990), and 
B. Banerjee(1993). 

For many years, resonance conditions and the problems asso­
ciated with them have been among the most interesting and 
challenging phenomenon for engineers. In this study, the effec­
tiveness of a passive dynamic vibration absorber within the 
autoparametric region has been investigated theoretically. A 
similar model was first studied by Ludeke (1942). He discussed 
the half-harmonic resonance occurrence rather than autopara­
metric resonance. In the present study, a series of parametric 
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Studies have been carried out to investigate the response of 
the nonlinear dynamics of the system for different tip mass-
pendulum ratios and various pendulum damping coefficients 
when subjected to a sinusoidal excitation. Furthermore, experi­
ments were performed to substantiate the energy transfer pre­
dicted theoretically. 

This research will concentrate on the system dynamic re­
sponse in the neighborhood of the internal resonance described 
by the following equation: 

2W2 (1) 

where UJX, w^ and fi are higher mode, lower mode, and forcing 
frequencies, respectively. 

2 Mathematical Formulation 

2.1 Derivation of Governing Equations. The model 
consists of a flexible beam rigidly clamped at the base with a 
simple pendulum mounted on a tip mass. It is assumed that the 
beam behaves like an Euler-Bernoulli beam. The clamped end 
of the beam has a harmonic base excitation ofyg{t). Assuming 
that 0{C,,t)i& the angular displacement of the beam as a function 
of location and time, the inextensibility condition can be written 
as 

D " + {\ + u'Y 1 (2) 

where «(^, t) and v{t,, t) describes the displacements in the x 
and y directions, respectively, with respect to deformed axis at 
C, and time t. Displacement, u with respect to displacement, v 
is given as 

M(^,0 = ? 
Jo 

1 - v'^)d'q (3) 

where the prime symbol denotes differentiation with respect to 
s. The Euler-Bernoulli theory defines the bending moment of 
the beam and column as 

M{s) = EI 
V(l -v") 

(4) 

Referring to Fig. 1, the moments acting around the z-axis due 
to the forces at C, can be written, respectively, as 
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EI 
v"" n"3 + Zv'v"v"' 3u"v"^ 

V(l - v ' " ) "̂  V ( l - D " ) "̂  V ( 1 - U " ) 

^ "" Jo LVd-u ' ^ ) 

V(i - v " ) y l 

) V( l - u ' ' ) 
<i?7 

(pAu + cii)rf^ + p Ay'jCL - i ) 

+ (w + mp)(v + y'j) + mplp('4> sin 4> + <f)^ cos </>) 

Fig. 1 Beam with a tip appendage 

and 

M„̂  = - I pAui^, t) I sin 9(77, t)drid^ (5) 

- J [pAi),(C,0 + ct ) (C,0]J cos6»(r?,Orf??'̂ C (6) 

where (.) represents the time derivative, pA is the mass of the 
beam per unit length, and c is the damping of the beam. The 
first integral terms show the total internal forces acting on the 
beam, and the second integral terms show the moment arms in 
both of the above equations. 

The moment equation is obtained in the x and y directions 
at ^ = L as 

MuL = [-{m + mp)u(L, t) + mplp[(j) cos 4>(L, t) 

- ^^ sin 0(L, 0 ] J sin 4>(t;, t)d>; (7) 

and 

M„L = [-(m + mp)v(L, t) - mplp[<l> sin 4>(L, t) 

+ </.' cos </)(L, 0 ] J cos 4){^, t)d<, (8) 

In Eqs. (7) and (8), m is the tip mass, rup and /;, are the mass 
and length of the pendulum, and (f} is the pendulum angular 
displacement being defined as positive in the counterclockwise 
direction. Differentiating Eqs. ( 4 ) - ( 8 ) twice with respect to .y 
and equating the terms resulting from the bending moment to 
those from inertia and externally applied load yields the govern­
ing equation for the beam dynamics as 

\ l '̂  Jo LVd - i ; ' ' ) V(i -v'^) 

, r̂  \v'^ + v'v' v'^"-
(m + m„) I , -I—, 

' Jo LV(i -v") V(i -v"). 
mplp(<i> sin 4> ~ 4'^ cos </>) > 

+ V(l -v'^)[pA{v + y,) + ci)] = 0 (9) 

Note that, since the pendulum damping, Cp, is very low, the 
effect of the Cp4> term to the beam response was ignored in the 
above equation. The governing Eq. (9) includes higher order 
nonlinear terms. Expanding the slope-curvature terms by using 
the binomial expansion and eliminating terms of order higher 
than three yields 

EI 

pAv' \ (i)'^ + v'v')dr] + v'v" \ (pAii + cv)dC, 
Jo Js 

+ pAy'giL -- s) + (m + mp)(\j + y^) 

+ mplpi4) sin (f) + 4>^ cos </>) 

- v"\ J pA J (i)'^ + v'v')dC,dri + (m + nip) 

\ ( i) ' ' + v'v' 
Jo 

)dtl, — mplp{<j) cos (f) — 4'^ sin </>) 

+ {\ - kv'^)[pA{v + y,) + cv] = Q. (10) 

N o m e n c l a t u r e 

c = damping coefficient of the beam 
Cp = damping coefficient of the pen­

dulum 
E = modulus of elasticity 
/ = moment of inertia 
J = polar moment of inertia 
L = length of the beam 
Ip = length of the pendulum 

M(s) = bending moment 
m = tip mass 

nip = pendulum mass 
pA = mass of the beam per unit length 

i = reference variable along the 
beam 

t = time 
u = axial deflection with respect to 

the deformed axis at ^ 
V = transverse deflection with respect 

to the deformed axis at ^ 
ygit) = base acceleration 

6 = angle of the deflection of the 
beam with x-axis 

(f) = pendulum angular displacement 

Wb = circular frequency of the beam 
Wp = circular frequency of the pendu­

lum 
n = forcing frequency 

z„,„^ = maximum steady state response of 
the beam 

(pmax = maximum steady state response of 
the pendulum 

^ = deformed elastic axis of the beam 
(') = derivative with respect to i 
(.) = derivative with respect to t 
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Further, the equation of the pendulum can be obtained as 

4> + -(v + jfg + g) sin (j) 

H cos ch + 
In m„i 

(^ - t -0 ) = 0. (11) 

where Cp is the damping coefficient at the pivot point of the 
pendulum and y^ is the base excitation. Taking the derivative 
of Eq. (3) with respect to time, expanding by using a binomial 
expansion, and eliminating terms of higher order than three 
yields 

u= ( (i)'2 + v'v')dC,. (12) 
Jo 

differentiating sin 6 = v' with respect to time and expanding 
by using a binomial expansion gives 

= v'+ ^v'^i)'. (13) 

where 9 is the angular velocity of the beam. Substituting Eqs. 
(12) and (13) into Eq. (11) yields 

. . 1 1 /"̂  

h 
1 r̂  

g) s.m4> + - I (i)'^ + v'v')dt, cos (/) 
/„ Jo 

+ -^Av' +-v"-v' + 4>]=Q (14) 

The dynamics of the beam-tip mass-pendulum combination 
is defined by the nonhnear coupled Eqs. (10) and (14). Since 
the closed form solution cannot be obtained, Eqs. (10) and (14) 
should be transformed to the ordinary differential equation form 
by using one of the weighted residual methods. The Galerkin 
method is used as a transformation method in this study. 

2.2 Truncated Equations. The response of the nonlinear 
problem can be defined as 

v{s,t) = S ryi{s)z,it) (15) 

where r is the scaling factor, yiis) is the eigenfunction, which 
is the solution of the linear eigenvalue problem, and Zi{t) is 
time dependent unknown time modulations of the corresponding 
eigenfunctions. In this study, in applying the Galerkin method 
the modal series will be truncated at the first mode, so that 

v{s, t) = ry{s)z{t) (16) 

Substituting Eq. (16) into the partial differential Eq. (10) and 
orthogonaUzing the error with respect to the eigenfunction 
yields the following ordinary differential equation 

Giz + G2zz'^ + G^cz + G^czz^ + Gsz^z 

+ (Ge + tn4> cos (p + h'4>^ sin <f))z 

+ (Gjj/g + tnip sin (j) + tji^^ cos (j))z^ 

+ G,z'+ G,y, = 0, (17) 

where G and t are the coefficients obtained after applying the 
Galerkin method. Following the same procedure, the pendulum 
equation can be obtained as 

J p 
4> + Y ^42 + yg + g) sin <l) + Y (i^ + zz) cos 4) 

ilpl'p 

P2Z + ^P,zz^ + </)) = 0, (18) 
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Fig. 2 Frequency response curves for f = 0.00025 m, m^lm ŝ  1 /4, Ci, 
= 0.10999 kg/s, c„ = 0.04364 kg/s, and E{ = 1.373974 Nm' 

where P | , P^, P^, and P4 are the coefficients obtained after 
applying the Galerkin method. 

3 Numerical Results 
The results of numerical integration are presented for the 

system parameters: A = 40.464 E-06 m?, p = 7830 kg/m^, m 
= 0.212 kg, L = 0.336 m, / = 8.669867 E-12 m^ The parame­
ters varied are c,„ and mlnip. For all the numerical analyses, 
the internal frequency ratio of 5, the time step dt = 0.01 seconds, 
and the frequency sweep by an increment of 0.0015 Hz are 
taken to be constant. 

Figures 2, and 3 show the beam and pendulum response 
amplitudes as a function of forcing frequency, f2, for the forcing 
frequency amplitude of 0.25 mm peak-to-peak, the natural fre­
quency of the beam, W/, = 3.07 Hz, the natural frequency of 
the pendulum, Wp = 1.535 Hz, and m/m,, = j . These two figures 
reveal that the response of the beam and pendulum and the 
energy exchange between the modes are related to the pendulum 
damping coefficient. As the damping coefficient, Cp, decreases 
autoparametric interaction between the two modes becomes 
stronger. Figure 3 shows a strong autoparametric interaction 
between the beam and the pendulum when the excitation fre-
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Numerical Response Curves 
g (o)Beom Response 

2.8 2.9 3.0 3.1 

n (Hz) 

(b)Penduiunn Response 

parametric interaction region changes with respect to the forcing 
amplitude. Higher forcing amplitude results in a larger range 
of frequency for absorption action. 

4 Experimental Procedures and Equipment 

The beam material and the length, the tip mass and the damp­
ing coefficient of the beam were taken to be constant (L = 336 
mm, m = 212 gr, and ĉ  = 0.07 kg s/m) for all experiments. The 
experiment was conducted for two main parameters, namely the 
forcing amplitude and the pendulum mass. The experiments are 
performed in the frequency interval 2.0 to 3.8 Hz to obtain the 
frequency response curves. This interval covers the first natural 
frequency of the beam and integer multiples of the pendulum 
frequency. 

The Macintosh llfxSO was used as the computer including 
MIO-16 and NB-DMA boards and LabVIEW software. The 
Lab VIEW software was used to program the MlO-16 board to 
record two-channel signals from the system as the beam and 
the pendulum response. The sampling rate. At, was assumed 
to be 0.02 sec. The experiments were performed in approxi­
mately 10 minutes for frequency response curves for the forcing 
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Fig. 3 Frequency response curves for f = 0.00025 m, mp/m ^ 1/4, C/, 
= 0.10999 kg/s, Cp = 0.02182 kg/s, and El = 1.373974 Nm' 

Numericol Response Curves 
g (o)Beonn Response 
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quency, Q, reaches approximately 2.95 Hz and the first jump 
phenomenon is observed. At this point, namely point A, A', 
when the pendulum starts to oscillate, energy is being trans­
ferred to it. Points A and A' on the response curve are important 
as they define the starting point of the critical region (autopara-
metric region) of the energy exchange. The critical region ends 
at points B and B ' , where the frequency of the beam response 
is n = LOi, = 3.07 Hz. From this figure, it is evident that the 
amplitude of the beam is decreased and the energy is transferred 
to the pendulum when the primary resonance case is reached. 

Figures 2 and 4 show the frequency response curves of the 
beam and the pendulum for different mass ratios. The mass 
ratios of the beam to the pendulum are chosen as j and 5, and 
corresponding frequencies of the beam with the tip mass be­
come 3.14 and 3.07 Hz, respectively. Since the smaller pendu­
lum has less inertia, comparison of Figs. 2 and 4 indicates 
that more energy is absorbed by the smaller pendulum. It is 
noteworthy to mention that the pendulum with smaller mass 
may have a response of more than one period and eventually 
experiences irregular motion even when the excitation ampli­
tude is small. Figures 3 and 5 show that different values of 
forcing amplitude give the same trend for system response. 
However, comparison of these two figures reveals that the auto-

(b)Pendulum Response 

a 

A' 

. / • 

%A; 

\ 

Critical 
Region 

B' 
2.8 2.9 3.0 

n 
3.1 3.2 3.3 

Hz) 

Fig. 4 Frequency response curves for f = 0.00025 m, irip/m >» 1/5, Ci, 
= 0.10999 kg/s, Cp = 0.17455 kg/s, and El = 1.373974 Nm^ 
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, Numerical Response Curves 
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Fig. 5 Frequency response curves for f = 0.000125 m, nip/m '» 1 /4, c,, 
= 0.10999 Itg/s, Cp = 0.02182 kg/s, and El = 1.373974 Nm'' 

frequency interval 1.8 Hz, and in approximately 2 minutes for 
specified forcing frequencies. This experimental duration was 
considered to be long enough to observe all possible dynamics 
characteristics of the system and to eliminate the transient ef­
fects due to changes in excitation frequency. The experimental 
analysis was performed for four cases and the following dia­
grams are plotted to show the detail dynamics of the system: 

(1) frequency response curve, 
(2) time history, 
(3) FFT, and 
(4) phase plane. 

The MB Dynamics Model ClOE electrodynamic shaker was 
used as the vibrating equipment. It has 1,200 lbs force output 
rating and 1-inch peak-to-peak displacement. It is powered by 
an MB Dynamics solid-state Model S6K power amplifier. The 
excitation frequency range (lower and upper limits), frequency 
increment, and excitation amplitude were programmed by using 
the vibration control system. Excitation frequency was incre­
mentally varied between these limits during the experiment, or, 
if desired, the frequency was held constant during the experi­
ment. The Model 701LM Sweep Generator was used as the 
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exciter for a vibration control system which provides the fre­
quency range from 0.2 Hz to 5,000 Hz. The Model 801B Com­
pressor was used to provide automatic level control in systems 
using frequencies from 2 to 10 kHz to provide automatic signal 
compression. The Model 80IB Compressor can receive two 
feedback signals. Any two of the three signals, (namely, accel­
eration, velocity, and displacement) can be used to control the 
output from the sweep generator-compressor combination. The 
Model 61 OB Vibration Monitor was used separately as a stand­
alone vibration monitor; also, it was used as part of the control 
system. The sweep generator and compressor were used to mon­
itor and control the vibration system. The Model 831A Multi-
Level Programmer was used for setting four different levels of 
excitation. An accelerometer was used for a feedback signal to 
control the shaker system. The Data 6000 is used to analyze 
the natural frequency, excitation signal condition, and the FFT 
of the response during the experiment. 

The opto-digital device connected to the tip mass measures 
the relative rotation between the tip mass and pendulum from 
the vertical downward position. The opto-digital device has a 
linear response over a +180 degree range, therefore, the full-
phase response of the pendulum can be obtained (Ertas and 
Mustafa, 1992). The opto-digital angle measurement system 
consists of four components: (1) optical encoder, (2) encoder/ 
counter module, (3) analog-out module, and (4) programmable 
controller. These four components, along with an analog-in 
module, constitute a digitally programmable control system. 
The programmable controller forms the central element in the 
control system. It acquires and transmits information to and 
from various components. The control strategy is implemented 
via programs written in a special purpose language called the 
Ladder Logic. A Ladder Logic program is a list of instructions 
that the processor executes. 

The opto-digital angle measurement system consists of an 
optical incremental shaft encoder (Disc Instruments, E20 series) 
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Fig. 6 Frequency response curves for f = 0.00025 m and mp/m -^ ^/4 
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o (o) Beam Response 

n(Hz) 

o (b) Pendulum Response 
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2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 
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Fig. 7 Frequency response curves for f = 0.00025 m, f = 0.00175 m, 
and m„/m ^ ^/4 

that produces 4096 pulses per revolution of the shaft. The en­
coder has three outputs, channels A and B and an index. The 
outputs from channels A and B are square waves that are slightly 
out of phase. The encoder consists of a perforated disc, with a 
light source on one side and a photo sensor on the other. As 
the disc is rotated, the light passes through the perforations and 
is detected by the sensor, which produces an electrical pulse. 
The pulses are then counted by an optical encoder/counter mod­

ule (Allen-Bradley 1771-IJ). The encoder module, by compar­
ing the phase relationship between channels A and B, can detect 
a change in direction of rotation; hence, it can count up or 
down. This count is passed to the programmable controller (Al­
len-Bradley PLC 2/16) and then to an analog output module 
(Allen-Bradley 1771-OFE), where it is converted to an analog 
signal proportional to the count. The opto-digital angle measure­
ment system described above provides a robust and reliable 
alternative to existing measurement techniques. 

5 Experimental Results 
For the first experiment, the mass ratio of the tip-mass of the 

beam, m and the pendulum mass, rrip was taken to be approxi­
mately I. The natural frequency of the beam then becomes Wj 
= 3.07 Hz, and the natural frequency of the pendulum is set to 
cu,, = 1.535 Hz to maintain the condition of the autoparametric 
interaction. Figure 6 shows the variation of the response ampli­
tudes as a function of forcing frequency, U, for the forcing 
amplitude of 0.25 mm peak-to-peak. The forcing amplitude kept 
approximately constant in the neighborhood of the autoparame­
tric resonance for all the experiments. 

As shown in this figure, the vertical axes represents the beam 
response, V, interms of voltage, generated by the piezo film 
which is proportional to strains developed in the beam and the 
<p represents the pendulum response interms of voltage gener­
ated by the opto-digital device. The experiment was conducted 
in the interval 2.0-3.8 Hz. It is seen from the figure that even 
though the system is excited by the natural frequency of the 
beam, the pendulum is also excited because of the coupling 
between the beam and the pendulum. This figure shows a strong 
autoparametric interaction between the beam and the pendulum 
when the excitation frequency, fi, reaches approximately 3.0 
Hz and the first jump phenomenon is observed. At this point, 
namely point C, C, energy is transferred to the pendulum from 
the beam; hence, the pendulum starts oscillating. As mentioned 
previously, points C and C on the response curve are the start­
ing point of the critical region (autoparametric region) of the 
energy exchange. The critical region ends at points D and D', 
where the frequency of the beam response is CI = u>i, = 3.10 
Hz. From this figure, it is evident that the amplitude of the 
beam is almost diminished and the total energy is absorbed by 
the pendulum when the primary resonance case is reached. In 
other words, the complete energy transfer between modes oc-
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Fig. 8 Detail dynamics of tiie system for the forcing frequency of 2.95 Hz, f = 0.00025 m, 
and ntp/m « 1 /4 
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Fig. 9 Detail dynamics of the system for the forcing frequency of 3.02 Hz, f = 0.00025 m, 
and mJm « 1 / 4 

curs when the beam frequency is twice the pendulum frequency 
and the forcing frequency is equal to beam frequency (wj = 
7,ijjp a n d fi = w,!,). 

Figure 7 represents the change of the autoparametric interac­
tion region with respect to forcing amplitude. As shown in this 
figure, when the structure is subjected to high forcing amplitude, 
absorption action will be within the larger range of frequency. 
When the structure is subjected to low forcing amplitude, ab­
sorption action will be within the small range of frequency. 
Figure 7 also reveals that the energy exchange from beam to 
pendulum is significantly increased when the system is under 
high amplitude excitation. 

Figures 8(a) and 8(c) show the time history of the beam 
and the pendulum just before the first-jump phenomenon at ft 
= 2.95 Hz. The FFT diagrams are shown in Figs. 8(Z)) and 
8(rf), respectively. Since the system is not within the autopara­
metric region at this point, the FFT diagrams show only excita­
tion frequency, the pendulum and the beam are oscillating with 
f) = 2.95 Hz because interaction between the beam and the 

pendulum has not yet begun. The noninteractive motion be­
tween the beam and the pendulum can also be verified by the 
projection of ^ and d<l>ldt plane (phase plane) as shown in Fig. 
8(g) . From this figure, it is clear that both the beam and the 
pendulum frequency ratios are one. 

Figure 9 shows the complete dynamics of the beam and the 
pendulum at the frequency of 3.02 Hz within the critical region. 
With reference to Figures 9(*) and 9(c?), it is seen that the 
pendulum frequency is one-half of the beam frequency. It is 
interesting to note that the second frequencies appear in the 
FFT plots as shown in Figs. 9(ft) and 9(d) . Namely, in Fig. 
9 (^ ) , the dominant beam frequency is ft = w^ = 3.02 Hz, 
and the the second frequency called the pendulum coupling 
frequency Wp = 1.51 Hz. A similar coupling effect from the 
beam to the pendulum is also evident as shown in Fig. 9(fi?). 

As shown in Fig. lO(fl), when the natural frequency of the 
pendulum is tuned to cause internal resonance near the desired 
excitation frequency, beam response is minimized. It is antici­
pated that the maximum absorption action should occur when 

I (o) Time History of the Beam I (b) FFT of the Beom 
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l=ig. 10 Detaii dynamics of the system for the forcing frequency of 3.10 Wz, f = 0.00025 
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Fig. 11 FFT of the beam pendulum system for the forcing frequency of 
3.50 Hz, f = 0.00175 m, and njp/m «3 1/4 

ijji, — lujp = f2 = 3.07 Hz. However, as shown in Fig. 6, 
the beam energy is almost diminished and, consequently, its 
amplitude is collapsed when Q. = 3.10 Hz. It is, of course, 
difficult to tune the pendulum precisely to the internal resonance 
condition of wt = 2w,, Hz and, as a result, instead of having 
the most energy absorption action at the exact internal resonance 
condition of W(, = 2w,, = 3.07 Hz, it takes place at fi = 3.10 
Hz. It is interesting to note that the pendulum now has a nice 
periodic motion, as can be seen from Figs. 10(c), lO(rf), and 
10( / ) . Figure \0{b) shows that the coupling effect of the pen­
dulum on the beam still exists, and one can assume that this is 
the dominant energy which oscillates the beam slightly about 
the static equilibrium position. 

As shown in Fig. 7, after the critical region, the system 
reaches to second jump phenomenon at approximately Q, = 3.55 
Hz for both excitation amplitudes, / = 0.00025 m and / = 
0.00175 m. At this frequency, both the beam and the pendulum 
lose their stability and jump to another stable point. To reach 
the steady-state response at this point, the experiment is contin­
ued for approximately 3 minutes. The forcing frequency is then 
swept until fl = 3.8 Hz. When the forcing frequency is approxi­
mately between 3.48 Hz and 3.58 Hz, the system goes to chaotic 
motion. In other words, system response does not show any 
regular pattern even after a long time. Right after the chaotic 
motion, the system reaches the new steady-state motion at a 
forcing frequency Q. = 3.58 Hz. Although the experiment was 
conducted for 2 hours and 25 minutes at a forcing frequency 
of 3.50 Hz, only 130,000 data points were recorded during the 
last 25 minutes. A short piece of the record is presented in Fig. 
11. From Fig. 11, it is evident that the time histories are not 
regular and the FFT shows numerous peaks. 

For the results of the experiment shown in Fig. 12, the mass 
ratio of the beam and the pendulum are taken to be approxi­
mately ^ . The natural frequency of the beam becomes uii, = 
3.38 Hz, and the natural frequency of the pendulum is set to 
Wp = 1.69 Hz to maintain the condition of autoparametric inter­
action. Experiments are carried out with the same parameters 
as the previous ones. This figure illustrates that even the system 
is excited with low forcing amplitude, the system loses its peri­
odicity within the autoparametric interaction region. 

Furthermore, to investigate the unabsorbed motion of the 
beam, the mass of the pendulum (m^ = 54 gr) is combined 
with the tip mass of the beam (m = 212 gr) and experiments 
are performed with the tip mass (m = 266 gr) without the 
pendulum (Fig. 13). Thus the beam natural frequency, 3.07 
Hz, remains the same as in the first experiment shown in Fig. 
6. Comparison of Fig. 6 with Fig. 13 for the forcing amplitude 
of 0.00025 m, reveals that the deflection of the beam is consider-

p-^'V 
2.0 2J 2.4 2.6 2.6 3.0 3.2 3.4 3.6 3.8 

^ ( H z 

% 
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b) Pendulum Response 
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ri(Hz) 

Fig. 12 Frequency response curves for i = 0.00175 m and mplm <== 
1/32 

ably reduced. As shown in Fig. 6, the beam response is signifi­
cantly diminished in the neighborhood of the natural frequency 
of the beam. 

The theoretical results agree well with the experimental re­
sults quantitatively. Although experimental results show a 
stronger coupling effect as well as a higher energy exchange 
than those predicted theoretically, the energy exchange and, 
consequently, the absorption action through the pendulum is 
evident from both approaches (see Figs. 2 and 6). The quantita­
tive discrepancy between the experiment and theoretical results 
is due to neglecting the effect of the higher modes in the theory 
when the Galerkin Method is used. 

o Beam Responce 
6-

0.0005 m ! 

; / 0.00025 m 

Q(Hz) 

Fig. 13 Unabsorbed response of the beam for f = 0.00025 m, and f 
0.00050 m 
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6 Conclusion 
This paper presents the nonlinear equations of motion to 

investigate the autoparametric interaction between the first two 
modes of a beam-tip mass-pendulum system. Numerical integra­
tion is used to demonstrate some of the analytical results for 
various pendulum damping coefficients and beam pendulum 
mass ratios. The results showed that autoparametric interaction 
between the beam and the pendulum modes occurs when the 
external resonance condition of Q. = uji, and the primary reso­
nance condition of co/, = 2ujp are satisfied. Furthermore, experi­
ments were performed to substantiate the energy transfer be­
tween the beam and pendulum predicted theoretically. Particu­
larly, energy absorbtion by the pendulum in the neighborhood 
of the internal resonance conditions has been qualitatively veri­
fied. In conclusion, the results of this research validate the con­
cept of using a pendulum as vibration absorber for flexible 
structures. 
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