Abstract

We use a Langevin equation to examine the dynamics and fluctuations of a flux line (FL) in the presence of an {\it alternating longitudinal current} J(ω)J_{\parallel}(\omega). The magnus and dissipative forces are equated to those resulting from line tension, confinement in a harmonic cage by neighboring FLs, parallel current, and noise. The resulting mean-square FL fluctuations are calculated {\it exactly}, and a Lindemann criterion is then used to obtain a nonequilibrium `phase diagram' as a function of the magnitude and frequency of J(ω)J_{\parallel}(\omega). For zero frequency, the melting temperature of the mixed phase (a lattice, or the putative "Bose" or "Bragg Glass") vanishes at a limiting current. However, for any finite frequency, there is a non-zero melting temperature.Comment: 5 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020