438 research outputs found

    Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties

    Get PDF
    Multicomponent self-assembly of peptides is a powerful strategy to fabricate novel functional materials with synergetic properties that can be used for several nanobiotechnological applications. In the present study, we used a coassembly strategy to generate an injectable ultrashort bioactive peptide hydrogel formed by mixing a dipeptide hydrogelator with a macrophage attracting short chemotactic peptide ligand. Coassembly does not impede hydrogelation as shown by cryo-transmission electron microscopy (cryo-TEM), scanning electron microscopy, and rheology. Biocompatibility was shown by cytotoxicity assays and confocal microscopy. The hydrogels release the entrapped skin antibiotic ciprofloxacin, among others, in a slow and continuous manner. Such bioinspired advanced functional materials can find applications as wound dressing materials to treat chronic wound conditions like diabetic foot ulcer

    Precision mass measurements of radioactive nuclei at JYFLTRAP

    Get PDF
    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.Comment: 4 pages and 4 figures, RNB7 conf. pro

    Mass measurements in the vicinity of the doubly-magic waiting point 56Ni

    Full text link
    Masses of 56,57Fe, 53Co^m, 53,56Co, 55,56,57Ni, 57,58Cu, and 59,60Zn have been determined with the JYFLTRAP Penning trap mass spectrometer at IGISOL with a precision of dm/m \le 3 x 10^{-8}. The QEC values for 53Co, 55Ni, 56Ni, 57Cu, 58Cu, and 59Zn have been measured directly with a typical precision of better than 0.7 keV and Coulomb displacement energies have been determined. The Q values for proton captures on 55Co, 56Ni, 58Cu, and 59Cu have been measured directly. The precision of the proton-capture Q value for 56Ni(p,gamma)57Cu, Q(p,gamma) = 689.69(51) keV, crucial for astrophysical rp-process calculations, has been improved by a factor of 37. The excitation energy of the proton emitting spin-gap isomer 53Co^m has been measured precisely, Ex = 3174.3(10) keV, and a Coulomb energy difference of 133.9(10) keV for the 19/2- state has been obtained. Except for 53Co, the mass values have been adjusted within a network of 17 frequency ratio measurements between 13 nuclides which allowed also a determination of the reference masses 55Co, 58Ni, and 59Cu.Comment: 14 pages, 13 figures, submitted to Phys. Rev.

    Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida

    Get PDF
    Genetic modification of the flavonoid pathway has been used to produce novel colours and colour patterns in ornamental plants as well as to modify the nutritional and pharmaceutical properties of food crops. It has been suggested that co-ordinate control of multiple steps of the pathway with the help of regulatory genes would lead to a more predictable control of metabolic flux. Regulation of anthocyanin biosynthesis has been studied in a common ornamental plant, Gerbera hybrida (Asteraceae). An R2R3-type MYB factor, GMYB10, shares high sequence similarity and is phylogenetically grouped together with previously characterized regulators of anthocyanin pigmentation. Ectopic expression of GMYB10 leads to strongly enhanced accumulation of anthocyanin pigments as well as to an altered pigmentation pattern in transgenic gerbera plants. Anthocyanin analysis indicates that GMYB10 specifically induces cyanidin biosynthesis in undifferentiated callus and in vegetative tissues. Furthermore, in floral tissues enhanced pelargonidin production is detected. Microarray analysis using the gerbera 9K cDNA array revealed a highly predicted set of putative target genes for GMYB10 including new gene family members of both early and late biosynthetic genes of the flavonoid pathway. However, completely new candidate targets, such as a serine carboxypeptidase-like gene as well, as two new MYB domain factors, GMYB11 and GMYB12, whose exact function in phenylpropanoid biosynthesis is not clear yet, were also identified

    Electron-capture branch of 100Tc and tests of nuclear wave functions for double-beta decays

    Get PDF
    We present a measurement of the electron-capture branch of 100^{100}Tc. Our value, B(EC)=(2.6±0.4)×105B(\text{EC}) = (2.6 \pm 0.4) \times 10^{-5}, implies that the 100^{100}Mo neutrino absorption cross section to the ground state of 100^{100}Tc is roughly one third larger than previously thought. Compared to previous measurements, our value of B(EC)B(\text{EC}) prevents a smaller disagreement with QRPA calculations relevant to double-β\beta decay matrix elements

    Beta-decay branching ratios of 62Ga

    Get PDF
    Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the vector coupling constant of the weak interaction and the Vud quark-mixing matrix element. For part of the experimental studies presented here, the JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga. The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is in agreement with previous measurements and allows to determine the ft value and the universal Ft value for the super-allowed beta decay of 62Ga

    TCP and MADS-Box Transcription Factor Networks Regulate Heteromorphic Flower Type Identity in Gerbera hybrida

    Get PDF
    The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida. We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3. Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.Peer reviewe
    corecore