87 research outputs found

    Effects of Açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the effect of açai fruit pulp on risk factors for metabolic disorders in overweight subjects. The açaí palm (<it>Euterpe oleracea </it>Mart.), which is native to South America, produces a small, black-purple fruit which is edible. The fruit has recently become popular as a functional food due to its antioxidant potential. Although several studies have been conducted in vitro and with animals, little is known about the potential health benefits in humans aside from an increase in plasma anti-oxidant capacity. Metabolic syndrome is a condition which is defined by a cluster of risk factors for cardiovascular disease and/or type-2 diabetes. Preliminary studies indicate that a reduction in reactive oxygen species can assist in the normalization of the metabolic pathways involved in this syndrome.</p> <p>Methods</p> <p>This was an open label pilot study conducted with 10 overweight adults (BMI ≥ 25 kg/m<sup>2 </sup>and ≤ 30 kg/m<sup>2</sup>) who took 100 g açai pulp twice daily for 1 month. The study endpoints included levels of fasting plasma glucose, insulin, cholesterol, triglycerides, exhaled (breath) nitric oxide metabolites (eNO) and plasma levels of high sensitivity C-reactive protein (hs-CRP). The response of blood glucose, blood pressure and eNO to a standardized meal was determined at baseline and following the 30 day treatment.</p> <p>Results</p> <p>Compared to baseline, there were reductions in fasting glucose and insulin levels following the 30 day treatment (both p < 0.02). There was also a reduction in total cholesterol (p = 0.03), as well as borderline significant reductions in LDL-cholesterol and the ratio of total cholesterol to HDL-cholesterol (both p = 0.051). Compared to baseline, treatment with açai ameliorated the post-prandial increase in plasma glucose following the standardized meal, measured as the area under the curve (p = 0.047). There was no effect on blood pressure, hs-CRP or eNO.</p> <p>Conclusion</p> <p>In this uncontrolled pilot study, consumption of açai fruit pulp reduced levels of selected markers of metabolic disease risk in overweight adults, indicating that further studies are warranted.</p

    Beta-Carotene Reduces Body Adiposity of Mice via BCMO1

    Get PDF
    Evidence from cell culture studies indicates that β-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15′-oxygenase (Bcmo1) and the BC-9′,10′-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10′-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1-/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1-/- mice showed increased expression of Bcdo2 in adipocytes and β-10′-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10′-apocarotenoid production, this effect of BC was absent in Bcmo1-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocyte

    Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations.

    Get PDF
    Dietary flavanols and flavonols, flavonoid subclasses, have been recently associated with a lower risk of type 2 diabetes (T2D) in Europe. Even within the same subclass, flavonoids may differ considerably in bioavailability and bioactivity. We aimed to examine the association between individual flavanol and flavonol intakes and risk of developing T2D across European countries. The European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study was conducted in 8 European countries across 26 study centers with 340,234 participants contributing 3.99 million person-years of follow-up, among whom 12,403 incident T2D cases were ascertained and a center-stratified subcohort of 16,154 individuals was defined. We estimated flavonoid intake at baseline from validated dietary questionnaires using a database developed from Phenol-Explorer and USDA databases. We used country-specific Prentice-weighted Cox regression models and random-effects meta-analysis methods to estimate HRs. Among the flavanol subclass, we observed significant inverse trends between intakes of all individual flavan-3-ol monomers and risk of T2D in multivariable models (all P-trend < 0.05). We also observed significant trends for the intakes of proanthocyanidin dimers (HR for the highest vs. the lowest quintile: 0.81; 95% CI: 0.71, 0.92; P-trend = 0.003) and trimers (HR: 0.91; 95% CI: 0.80, 1.04; P-trend = 0.07) but not for proanthocyanidins with a greater polymerization degree. Among the flavonol subclass, myricetin (HR: 0.77; 95% CI: 0.64, 0.93; P-trend = 0.001) was associated with a lower incidence of T2D. This large and heterogeneous European study showed inverse associations between all individual flavan-3-ol monomers, proanthocyanidins with a low polymerization degree, and the flavonol myricetin and incident T2D. These results suggest that individual flavonoids have different roles in the etiology of T2D.The EPIC-InterAct Study was supported by the European Union (Integrated Project LSHM-CT-2006-037197 in the Framework Programme 6 of the European Community). In addition, InterAct investigators acknowledge funding from the following agencies: R.Z.-R. was supported by a postdoctoral program Fondo de Investigación Sanitaria (FIS; no. CD09/00133) from the Spanish Ministry of Science; R.Z.-R. and C.A.G. were supported by the Health Research Fund (FIS) of the Spanish Ministry of Health (RTICC DR06/0020/0091); core support from the Medical Research Council (MRC) Epidemiology Unit is acknowledged for program MC_UU_12015/1 and MC_UU_12015/5; Y.T.v.d.S. was supported by NL Agency grant IGE05012 and an Incentive Grant from the Board of the UMC Utrecht (Netherlands); A.M.W.S. and D.L.v.d.A. were supported by the Dutch Ministry of Public Health, Welfare, and Sports, Netherlands Cancer Registry, LK Research Funds, Dutch Prevention Funds, Dutch ZON, World Cancer Research Fund, and Statistics Netherlands; T.J.K. and K.-T.K. were supported by Cancer Research UK; G.F., M.T., and F.P. were supported by Ligue contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, INSERM; G.M. was supported by Ministero della Salute Regione Toscana Progetto Integrato Oncologia–PIO; P.W.F. was supported by the Swedish Research Council, Novo Nordisk, the Swedish Heart Lung Foundation, and the Swedish Diabetes Association; L.B., K.O., N.R., and A.T. were supported by the Danish Cancer Society; V.K. and T.K. were supported by Deutsche Krebshilfe; A.M. was supported by Associazione Italiana per la Ricerca sul Cancro; M.L.R. was supported by the Asturias Regional Government; M.G., P.A., E.M.-M., and M.J.T. were supported by the Health Research Fund of the Spanish Ministry of Health, CIBER Epidemiology and Public Health (Spain); M.J.T. was supported by the Murcia Regional Government; and R.T. was supported by AIRE-ONLUS Ragusa, AVIS-Ragusa, the Sicilian Regional Government.This is the final published version distributed under a Creative Commons Attribution Licence, which can also be found on the publisher's website at: http://jn.nutrition.org/content/144/3/335.ful

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Modulation of endothelial cell proliferation and capillary network formation by the ox-LDL component: 1-palmitoyl-2-archidonoyl-sn-glycero-3-phosphocholine (ox-PAPC)

    No full text
    Atherosclerotic plaque formation is often associated with pathological angiogenesis. Modified phospholipids, including oxidized lipoproteins such as LDL, are found to induce adhesion of the monocytes to the endothelial cells and to stimulate their chemotaxis. Effects of oxidized 1-palmitoyl-2-archidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) mimic actions of minimally modified LDL in vivo. Interleukin-8 (IL-8) and interleukin-15 (IL-15) are known to induce both inflammation and angiogenesis. The goal of our study was to analyze a potential synergism between ox-PAPC and IL-15 in the in vitro model of angiogenesis carried out in the human endothelial cells (HUVECs). Increasing IL-15 concentrations led to formation of the tube-like structures in the matrigel 3D-model of angiogenesis (P < 0.05), in contrast to ox-PAPC that inhibited this process. HUVECs incubation with ox-PAPC led to reduced IL-15 gene basal expression (P = 0.033) along with parallel increase, however statistically insignificant, of basal gene expression of IL-8 (P = 0.086). Our findings point to the ox-PAPC opposite effects on the IL-8- and IL-15-mediated angiogenic responses that contribute to pathological angiogenesis induced by ox-LDL
    corecore