394 research outputs found
Structure of self-organized Fe clusters grown on Au(111) analyzed by Grazing Incidence X-Ray Diffraction
We report a detailed investigation of the first stages of the growth of
self-organized Fe clusters on the reconstructed Au(111) surface by grazing
incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are
in "local epitaxy" whereas the subsequent layers adopt first a strained fcc
lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial
relationship. The structural evolution is discussed in relation with the
magnetic properties of the Fe clusters.Comment: 7 pages, 6 figures, submitted to Physical Review B September 200
Miltefosine: a novel internal standard approach to lysophospholipid quantitation using LC-MS/MS
Taste processing in Drosophila larvae.
The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances
A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies
Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites
Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae
A combination of gene silencing and behavioral studies in the malaria vector mosquito Anopheles gambiae sheds light on the olfactory basis of DEET repulsion as well as reveals the role of another family of chemosensory receptors that facilitate olfaction in An. gambiae
MiR-662 is associated with metastatic relapse in early-stage breast cancer and promotes metastasis by stimulating cancer cell stemness
Background
Breast cancer (BC) metastasis, which often occurs in bone, contributes substantially to mortality. MicroRNAs play a fundamental role in BC metastasis, although microRNA-regulated mechanisms driving metastasis progression remain poorly understood.
Methods
MiRome analysis in serum from BC patients was performed by TaqMan™ low-density array. MiR-662 was overexpressed following MIMIC-transfection or lentivirus transduction. Animal models were used to investigate the role of miR-662 in BC (bone) metastasis. The effect of miR-662-overexpressing BC cell conditioned medium on osteoclastogenesis was investigated. ALDEFLUOR assays were performed to study BC stemness. RNA-sequencing transcriptomic analysis of miR-662-overexpressing BC cells was performed to evaluate gene expression changes.
Results
High levels of hsa-miR-662 (miR-662) in serum from BC patients, at baseline (time of surgery), were associated with future recurrence in bone. At an early-stage of the metastatic disease, miR-662 could mask the presence of BC metastases in bone by inhibiting the differentiation of bone-resorbing osteoclasts. Nonetheless, metastatic miR-662-overexpressing BC cells then progressed as overt osteolytic metastases thanks to increased stem cell-like traits.
Conclusions
MiR-662 is involved in BC metastasis progression, suggesting it may be used as a prognostic marker to identify BC patients at high risk of metastasis
SEOM Clinical Guideline for bone metastases from solid tumours (2016)
Bone metastases are common in many advanced solid tumours, being breast, prostate, thyroid, lung, and renal cancer the most prevalent. Bone metastases can produce skeletal-related events (SREs), defined as pathological fracture, spinal cord compression, need of bone irradiation or need of bone surgery, and hypercalcaemia. Patients with bone metastases experience pain, functional impairment and have a negative impact on their quality of life. Several imaging techniques are available for diagnosis of this disease. Bone-targeted therapies include zoledronic acid, a potent biphosfonate, and denosumab, an anti-RANKL monoclonal antibody. Both reduce the risk and/or delay the development of SREs in several types of tumours. Radium 233, an alpha-particle emitter, increases overall survival in patients with bone metastases from resistant castration prostate cancer. Multidisciplinary approach is essential and bone surgery and radiotherapy should be integrated in the treatment of bone metastases when necessary. This SEOM Guideline reviews bone metastases pathogenesis, clinical presentations, lab tests, imaging techniques for diagnosis and response assessment, bone-targeted agents, and local therapies, as radiation and surgery, and establishes recommendations for the management of patients with metastases to bone
Cell Walls of Saccharomyces cerevisiae Differentially Modulated Innate Immunity and Glucose Metabolism during Late Systemic Inflammation
BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host's lower energy demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation. CONCLUSIONS: MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts
Overexpression of circulating MiR-30b-5p identifies advanced breast cancer
Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. Background
Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies.
Methods
Selected microRNAs were assessed using a quantitative reverse transcription-polymerase chain reaction in a testing cohort of formalin-fixed paraffin-embedded primary (n = 16) and metastatic BrC tissues (n = 22). Then, miR-30b-5p and miR-200b-3p were assessed in a validation cohort #1 of formalin-fixed paraffin-embedded primary (n = 82) and metastatic BrC tissues (n = 93), whereas only miR-30b-5p was validated on a validation cohort #2 of liquid biopsies from BrC patients with localized (n = 20) and advanced (n = 25) disease. ROC curve was constructed to evaluate prognostic performance.
Results
MiR-30b-5p was differentially expressed in primary tumors and paired metastatic lesions, with bone metastases displaying significantly higher miR-30b-5p expression levels, paralleling the corresponding primary tumors. Interestingly, patients with advanced disease disclosed increased circulating miR-30b-5p expression compared to patients with localized BrC.
Conclusions
MiR-30b-5p might identify BrC patients at higher risk of disease progression, thus, providing a useful clinical tool for patients’ monitoring, entailing earlier and more effective treatment. Nonetheless, validation in larger multicentric cohorts is mandatory to confirm these findings.Research Center of Portuguese
Oncology Institute of Porto (PI 74-CI-IPOP-19-2016). JL and CSG are supported
by a PhD fellowship from FCT - Fundação para a Ciência e Tecnologia (SFRH/
BD/132751/2017 and SFRH/BD/92786/2013, respectively). SS is supported by
a PhD fellowship IPO/ESTIMA-1 NORTE-01-0145-FEDER-000027. BMC is funded
by FCT-Fundação para a Ciência e a Tecnologia (IF/00601/2012
- …
