217 research outputs found

    Identification of Bruton's tyrosine kinase as a therapeutic target in acute myeloid leukemia

    Get PDF
    Bruton's tyrosine kinase (BTK) is a cytoplasmic protein found in all hematopoietic cell lineages except for T cells. BTK mediates signalling downstream of a number of receptors. Pharmacological targeting of BTK using ibrutinib (previously PCI-32765) has recently shown encouraging clinical activity in a range of lymphoid malignancies. This study reports for the first time that ibrutinib inhibits blast proliferation from human acute myeloid leukaemia (AML) and that treatment with ibrutinib significantly augmented cytotoxic activities of standard AML chemotherapy cytarabine or daunorubicin. Here we describe that BTK is constitutively phosphorylated in the majority of AML samples tested, with BTK phosphorylation correlating highly with the cell's cytotoxic sensitivity towards ibrutinib. BTK targeted RNAi knock-down reduced colony forming capacity of primary AML blasts and proliferation of AML cell lines. We showed ibrutinib binds at nanomolar range to BTK. Furthermore, we also showed ibrutinib's anti-proliferative effects in AML are mediated via an inhibitory effect on downstream nuclear factor-κB (NF-κB) survival pathways. Moreover, ibrutinib inhibited AML cell adhesion to bone marrow stroma. Furthermore, these effects of ibrutinib in AML were seen at comparable concentrations efficacious in chronic lymphocytic leukemia (CLL). These results provide a biologic rationale for clinical evaluation of BTK inhibition in AML patients

    Hip fracture evaluation with alternatives of total hip arthroplasty versus hemiarthroplasty (HEALTH): protocol for a multicentre randomised trial

    Get PDF
    Introduction: Hip fractures are a leading cause of mortality and disability worldwide, and the number of hip fractures is expected to rise to over 6 million per year by 2050. The optimal approach for the surgical management of displaced femoral neck fractures remains unknown. Current evidence suggests the use of arthroplasty; however, there is lack of evidence regarding whether patients with displaced femoral neck fractures experience better outcomes with total hip arthroplasty (THA) or hemiarthroplasty (HA). The HEALTH trial compares outcomes following THA versus HA in patients 50 years of age or older with displaced femoral neck fractures. Methods and analysis: HEALTH is a multicentre, randomised controlled trial where 1434 patients, 50 years of age or older, with displaced femoral neck fractures from international sites are randomised to receive either THA or HA. Exclusion criteria include associated major injuries of the lower extremity, hip infection(s) and a history of frank dementia. The primary outcome is unplanned secondary procedures and the secondary outcomes include functional outcomes, patient quality of life, mortality and hiprelated complications—both within 2 years of the initial surgery. We are using minimisation to ensure balance between intervention groups for the following factors: age, prefracture living, prefracture functional status, American Society for Anesthesiologists (ASA) Class and centre number. Data analysts and the HEALTH Steering Committee are blinded to the surgical allocation throughout the trial. Outcome analysis will be performed using a χ2 test (or Fisher’s exact test) and Cox proportional hazards modelling estimate. All results will be presented with 95% CIs. Ethics and dissemination: The HEALTH trial has received local and McMaster University Research Ethics Board (REB) approval (REB#: 06-151). Results: Outcomes from the primary manuscript will be disseminated through publications in academic journals and presentations at relevant orthopaedic conferences. We will communicate trial results to all participating sites. Participating sites will communicate results with patients who have indicated an interest in knowing the results. Trial registration number: The HEALTH trial is registered with clinicaltrials.gov (NCT00556842)

    Financial control, blame avoidance and Radio Caroline: Talkin’ ‘bout my generation

    Get PDF
    This research examines the use of financial mechanisms that simultaneously impose controls and facilitate blame avoidance by public office-holders. A qualitative historical examination is used to examine legislation designed to prevent Radio Caroline, a pirate radio station, from broadcasting into Britain in the 1960s. Radio Caroline made a mockery of the British Government’s power to manage radio through a monopolist, the British Broadcasting Corporation. In addition, Radio Caroline played the type of rock music the British Government sought to suppress as representing the undesirable side of youth culture. This research examines the suppression of Radio Caroline through the Marine & Broadcasting (Offences) Act (UK) 1967 and the legislative scapegoating of Radio Caroline by targeting its revenue-earning potential. Inter-generational conflict underpinned the legislative scapegoating of Radio Caroline. This research demonstrates how financial controls can mask scapegoating and blame avoidance strategies by governments

    Amyloid-b peptide on sialyl-LewisX-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface

    Get PDF
    Increased deposition of amyloid-b peptide (Ab) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer’s disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Ab-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Ab to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Ab to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Ab lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Ab and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Ab were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Ab to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.This work was supported by Alzheimer Association Grant NIRG-06-24448; NIH Grant 1P01 AG18357, R21NS052385, 5R21AG032579 and in part by 1P01HL095486 and AHA 0835676N; ‘‘Bolashak’’ scholarship and Ministry of Education and Science of the Republic of Kazakhstan 1029/GF2. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore