134 research outputs found

    Out-of-equilibrium dynamics of photoexcited spin-state concentration waves

    Get PDF
    International audienceThe spin crossover compound [FeIIH2L2-Me][PF6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. By combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSC

    Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition

    Full text link
    We present exact diagonalization results on a modified Peierls-Hubbard model for the neutral-ionic phase transition. The ground state potential energy surface and the infrared intensity of the Peierls mode point to a strong, non-linear electron-phonon coupling, with effects that are dominated by the proximity to the electronic instability rather than by electronic correlations. The huge infrared intensity of the Peierls mode at the ferroelectric transition is related to the temperature dependence of the dielectric constant of mixed-stack organic crystals.Comment: 4 pages, 4 figure

    Three-dimensional steep wave impact on a vertical plate with an open rectangular section

    Get PDF
    The present study treats the three-dimensional hydrodynamic slamming problem on a vertical plate subjected to the impact of a steep wave moving towards the plate with a constant velocity. The problem is complicated significantly by assuming that there is a rectangular opening on the plate which allows a discharge of the liquid. The analysis is conducted analytically assuming linear potential theory. The examined configuration determines two boundary value problems with mixed conditions which fully are taken into account. The mathematical process assimilates the plate with a degenerate elliptical cylinder allowing the employment of elliptical harmonics that ensure the satisfaction of the free-surface boundary condition of the front face of the steep wave, away from the plate. This assumption leads to an additional boundary value problem with mixed conditions in the vertical direction. The associated problem involves triple trigonometrical series and it is solved through a transformation into integral equations. To tackle the boundary value problem in the vertical direction a perturbation technique is employed. Extensive numerical calculations are presented as regards the variation of the velocity potential on the plate at the instant of the impact which reveals the influence of the opening. The theory is extended to the computation of the total impulse exerted on the plate using pressure-impulse theory

    Effects of Lattice and Molecular Phonons on Photoinduced Neutral-to-Ionic Transition Dynamics in Tetrathiafulvalene-pp-Chloranil

    Full text link
    For electronic states and photoinduced charge dynamics near the neutral-ionic transition in the mixed-stack charge-transfer complex tetrathiafulvalene-pp-chloranil (TTF-CA), we review the effects of Peierls coupling to lattice phonons modulating transfer integrals and Holstein couplings to molecular vibrations modulating site energies. The former stabilizes the ionic phase and reduces discontinuities in the phase transition, while the latter stabilizes the neutral phase and enhances the discontinuities. To reproduce the experimentally observed ionicity, optical conductivity and photoinduced charge dynamics, both couplings are quantitatively important. In particular, strong Holstein couplings to form the highly-stabilized neutral phase are necessary for the ionic phase to be a Mott insulator with large ionicity. A comparison with the observed photoinduced charge dynamics indicates the presence of strings of lattice dimerization in the neutral phase above the transition temperature.Comment: 9 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Insight into the Regulation of Glycan Synthesis in Drosophila Chaoptin Based on Mass Spectrometry

    Get PDF
    BACKGROUND: A variety of N-glycans attached to protein are known to involve in many important biological functions. Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the relationship between glycan structure and protein conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate alpha-d-mannosyltransferase), which affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those observed in the control and wild-type. CONCLUSIONS/SIGNIFICANCE: These results indicate that glycan processing depends largely on the backbone structure of the parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins

    Blood coagulation and beyond: position paper from the fourth Maastricht consensus conference on thrombosis

    Get PDF
    The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ- specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/ or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of- the- art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i. e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID- 19-associated coagulopathy is revisited.Nephrolog
    • …
    corecore