554 research outputs found

    Search Space Calculation to Improve Parameter Estimation of Excitation Control Systems

    Get PDF
    En este artículo se presenta un método para calcular el espacio de búsqueda de cada parámetro del modelo de un sistema de control de excitación. Con el espacio de búsqueda calculado se pretende reducir el número de conjuntos de parámetros solución que pueden ser encontrados por el algoritmo de estimación, reduciendo su tiempo de procesamiento. El método considera un rango de la constante de tiempo del generador sincrónico entre 4s y 10s, un índice de desempeño del sistema de control de excitación, una técnica de diseño de controladores y la estructura del modelo del sistema de control de excitación. Cuando se usa el espacio de búsqueda obtenido para estimar los parámetros, el algoritmo toma menos tiempo de procesamiento y los parámetros estimados son cercanos a los parámetros de referencia.A method to calculate the search space for each parameter in an excitation control system is presented in this paper. The calculated search space is intended to reduce the number of parameter solution sets that can be found by an estimation algorithm, reducing its processing time. The method considers a synchronous generator time constant range between 4s and 10s, an excitation control system performance index, a controller design technique, and the excitation control system model structure. When the obtained search space is used to estimate the parameters, less processing time is used by the algorithm. Also the estimated parameters are closer to the reference ones

    Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein

    Get PDF
    Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT). Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence

    SNOM characterization of a potential low cost thin gold coated micro-structured grating using a commercial CD substrate

    Get PDF
    In this work near-field optical measurements of a corrugated grating coated with a 30 nm thick gold film are presented. The grating was made using the polycarbonate corrugated substrate of a commercially available recordable CD as template. This has been proved to be a versatile and low cost technique in producing large 1.6 μm period gratings. The study was carried out using a Scanning Near-Field Optical Microscope (SNOM) working in both collection and reflection modes at two different wavelengths, 532 nm and 633 nm. The results illustrate that the intensity patterns of near-field images are strongly polarization-dependent, even showing different periodicity of the localized fields for orthogonal polarization states. When electric field of the light is polarized parallel to the grooves, the periodicity of the SNOM images is coincident with the grating period, whereas when the light is polarized perpendicular to the grooves the SNOM pattern shows a periodicity twice that of the corresponding topography of the grating. Numerical simulations of the SNOM data based on a two-dimensional Finite Difference Time-Domain (2D-FDTD) model have been realized. The results of the simulations are in good agreement with the experimental data, emphasizing the need of performing numerical simulation for the correct interpretation of SNOM data

    Unravelling the relevance of the polyadenylation factor EhCFIm25 in entamoeba histolytica through proteomic analysis

    Get PDF
    We recently reported that silencing of the polyadenylation factor EhCFIm25 in Entamoeba histolytica, the protozoan which causes human amoebiasis, affects trophozoite proliferation, death, and virulence, suggesting that EhCFIm25 may have potential as a new biochemical target. Here, we performed a shotgun proteomic analysis to identify modulated proteins that could explain this phenotype. Data are available via ProteomeXchange with identifier PXD027784. Our results revealed changes in the abundance of 75 proteins. Interestingly, STRING analysis, functional GO‐term annotations, KEGG analyses, and literature review showed that modulated proteins are mainly related to glycolysis and carbon metabolism, cytoskeleton dynamics, and parasite virulence, as well as gene expression and protein modifications. Further studies are needed to confirm the hypotheses emerging from this proteomic analysis, to thereby acquire a comprehensive view of the molecular mechanisms involved

    Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding

    Full text link
    Background: We sought to determine if ripple oscillations (80-120Hz), detected in intracranial EEG (iEEG) recordings of epilepsy patients, correlate with an enhancement or disruption of verbal episodic memory encoding. Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch, and included the seizure onset zone (SOZ) as a covariate in the LRMs. Results: We detected events during 58,312 word presentation trials from 7,630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the seizure onset zone (SOZ, p<0.04). In the left temporal neocortex RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however this effect only met significance in the SOZ (OR of word recall 0.71, 95% CI: 0.59-0.85, n=158 events, adaptive Hochberg p<0.01). Ripple on oscillation events (RonO) that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR 0.52, 95% CI: 0.34-0.80, n=140, adaptive Hochberg , p<0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus during word presentation correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p<0.01). Conclusion: Ripples and spikes generated in left temporal neocortex are associated with impaired verbal episodic memory encoding

    Multicellular Architecture of Malignant Breast Epithelia Influences Mechanics

    Get PDF
    Cell–matrix and cell–cell mechanosensing are important in many cellular processes, particularly for epithelial cells. A crucial question, which remains unexplored, is how the mechanical microenvironment is altered as a result of changes to multicellular tissue structure during cancer progression. In this study, we investigated the influence of the multicellular tissue architecture on mechanical properties of the epithelial component of the mammary acinus. Using creep compression tests on multicellular breast epithelial structures, we found that pre-malignant acini with no lumen (MCF10AT) were significantly stiffer than normal hollow acini (MCF10A) by 60%. This difference depended on structural changes in the pre-malignant acini, as neither single cells nor normal multicellular acini tested before lumen formation exhibited these differences. To understand these differences, we simulated the deformation of the acini with different multicellular architectures and calculated their mechanical properties; our results suggest that lumen filling alone can explain the experimentally observed stiffness increase. We also simulated a single contracting cell in different multicellular architectures and found that lumen filling led to a 20% increase in the “perceived stiffness” of a single contracting cell independent of any changes to matrix mechanics. Our results suggest that lumen filling in carcinogenesis alters the mechanical microenvironment in multicellular epithelial structures, a phenotype that may cause downstream disruptions to mechanosensing
    corecore