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Abstract

Cell–matrix and cell–cell mechanosensing are important in many cellular processes, particularly for epithelial cells. A crucial
question, which remains unexplored, is how the mechanical microenvironment is altered as a result of changes to
multicellular tissue structure during cancer progression. In this study, we investigated the influence of the multicellular
tissue architecture on mechanical properties of the epithelial component of the mammary acinus. Using creep compression
tests on multicellular breast epithelial structures, we found that pre-malignant acini with no lumen (MCF10AT) were
significantly stiffer than normal hollow acini (MCF10A) by 60%. This difference depended on structural changes in the pre-
malignant acini, as neither single cells nor normal multicellular acini tested before lumen formation exhibited these
differences. To understand these differences, we simulated the deformation of the acini with different multicellular
architectures and calculated their mechanical properties; our results suggest that lumen filling alone can explain the
experimentally observed stiffness increase. We also simulated a single contracting cell in different multicellular architectures
and found that lumen filling led to a 20% increase in the ‘‘perceived stiffness’’ of a single contracting cell independent of
any changes to matrix mechanics. Our results suggest that lumen filling in carcinogenesis alters the mechanical
microenvironment in multicellular epithelial structures, a phenotype that may cause downstream disruptions to
mechanosensing.
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Introduction

Epithelial cells reside in an environment where they are

surrounded by other cells, extracellular matrix (ECM), and fluids.

For example, in the mammary acinus, epithelial cells form a

spherical shell with a hollow fluid-filled lumen, and are surrounded

by other cells and ECM (Fig. 1A). Disruption of the orderly

arrangement of epithelial structures is associated with pathologies

such as ductal carcinoma in situ in the breast, where the hollow

lumen of these acinar structures fills with cells [1]. Lumen filling

can occur in response to genetic mutations [2] or increased ECM

stiffness [3], and the resultant pre-malignant growths can be a

precursor to invasive carcinoma [4]. In vivo breast carcinomas are

stiffer than the surrounding tissue [5], and the mechanical

properties of the ECM have been shown to influence cancer

progression [3,6–8]. However, whether the mechanical properties

of the epithelial component of the acinus change during cancer

progression remains unknown.

Mechanical differences between individual non-malignant and

malignant mammary epithelial cells are well appreciated, for

example with respect to cells grown on glass and polystyrene

surfaces [9]. Cells grown on glass and plastic substrates have very

different mechanical properties than those grown on softer

substrates [10], making it difficult to extrapolate these results to

an acinus. In a multicellular configuration, cells are also

interconnected via cell–cell contacts. These cell–cell contacts

transmit nanonewton-scale forces [11], enabling mechanosensing

[12] and guiding proper development [13,14] and function [15] of

the tissue. However, the relative contributions of the individual

cells, cell–cell junctions, and lumen formation to the mechanical

microenvironment of breast epithelial structures remain unknown.

The mechanics of multicellular tissue structures have been

studied using a variety of techniques. For example, Xenopus laevis
embryonic tissue [16] and murine sarcoma model tissues [17]

under micropipette aspiration behave in a linear elastic fashion.
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The stiffness of mouse mammary organoids has been character-

ized using atomic force microscopy (AFM) [18]. However, an

investigation of the contributors to multicellular mechanical

properties in phenotypically normal (hollow lumen) and pre-

malignant (filled lumen) acini has not been performed. Further-

more, it is not clear what, if any, influence the multicellular

mechanical properties have on cancer progression.

Healthy and pre-malignant acini could have different mechan-

ical properties as a result of single cell changes, cell–cell connection

strength, and multicellular architecture. To investigate the relative

contributions of these factors, we carried out in situ experiments

using MCF10A (hollow lumen) and MCF10AT (filled lumen)

mammary epithelial cells. We cultured MCF10A and MCF10AT

cells in laminin-rich ECM gels, extracted acini, and performed

creep compression tests using an AFM (Fig. 1B), which allowed us

to quantify both their elastic and viscoelastic properties. Through-

out the paper, we define ‘‘stiffness’’ to be associated with the elastic

part of our measurements, characterizing the long-duration

mechanical response, in the absence of any short-term viscoelastic

effects. Our data indicate that lumen formation was associated

with a decrease in stiffness, as MCF10AT acini were stiffer than

MCF10A acini. These differences could not be explained by

mechanical properties of single cells or multicellular structures

tested before lumen formation. To study how changes in

multicellular architecture influence bulk multicellular elasticity,

we developed a three-dimensional mechanical simulation of an

acinus and calibrated it using our experimental data. Our

simulation predicts that the absence of the lumen in the

MCF10AT acini could lead to increased stiffness consistent with

the experimental results. Further simulations of single cell

contraction within a hollow or filled acinar structure predict

approximately a 20% increase in the perceived stiffness by that cell

when the lumen is filled. This suggests an architectural reinforce-

ment of the stiffening, possibly amplifying the tumorigenic

mechanical signaling.

Results

Healthy and pre-malignant acini have different
mechanical properties

To measure the mechanical properties of healthy and pre-

malignant acini, we used the MCF10A and MCF10AT model

system. MCF10A cells are a human-derived breast epithelial cell

line [19]. When embedded in laminin-rich ECM, MCF10A single

cells grow into large structures with hollow lumina after a period of

2–3 weeks (Fig. 2A [20]). In contrast, c-Ha-ras transformed

MCF10AT cells [21,22] do not form lumina (Fig. 2B [2]). The

MCF10A cell line has been previously used to demonstrate that

breast epithelial cells sense ECM stiffness during acinar morpho-

genesis [3] and growth factor signaling [23].

Because mechanosensitive breast epithelial cells form filled

lumen acini in response to both genetic mutations [2] and

increased matrix stiffness [3], we hypothesized that healthy and

pre-malignant acini could have different mechanical properties,

which might provide a mechanical reinforcement of pre-malig-

nancy. Given recent evidence that cell–cell junctions are

mechanosensitive [12], the mechanics of the whole multicellular

structure could play an important role in tumor formation. We

developed a protocol that allowed us to extract cells from a

laminin-rich ECM without protease digestion, therefore keeping

intact structurally important proteins such as integrins and

cadherins (Sec., Fig. 1B). Using an atomic force microscope

(AFM), we applied step loads over the range of 10–50 nN to such

isolated acini, and used force-feedback control to maintain a given

load while recording deformation (Figure S1A–B). Both MCF10A

and MCF10AT acini exhibited large initial displacements followed

by viscous deformation (Fig. 2C). However, their responses were

markedly different from each other: given the same environmental

conditions and time to grow, pre-malignant MCF10AT acini were

1.6 times less compliant than phenotypically normal MCF10A

acini (two-sided t-test, p = 5.561025).

Figure 1. Background and experimental design. (A) A mammary epithelial cell grows in a dynamic environment surrounded by extracellular
matrix, fluids, and other cells. (B) Mammary epithelial cells grown in laminin-rich extracellular matrix can be extracted and mechanically probed at
single and multicellular states using identical trypsin-free extraction methods.
doi:10.1371/journal.pone.0101955.g001
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Structural differences explain mechanical differences
between healthy and pre-malignant acini

Three primary factors could account for the difference in

compliance between MCF10A and MCF10AT acini (Fig. 2D): (1)

single cell mechanics, (2) cell–cell connection strength, or (3)

changes in multicellular architecture.

To test the potential contribution of mechanical changes at the

single cell level, we embedded MCF10A and MCF10AT cells in

laminin-rich ECM as before, but extracted them after twelve hours

and subjected single cells to creep compression tests. MCF10AT

single cells were not noticeably stiffer than MCF10A single cells

(one-sided t-test, p = 0.329), suggesting that the increased stiffness

observed for pre-malignant acini does not result from stiffer cells

(Fig. 3A). To determine the influence of cell–cell connectivity

strength, we extracted MCF10A and MCF10AT structures after

6–8 days of growth. As suggested by previous literature [20], 6–8

day-old MCF10A structures did not yet have lumina (i.e. acini

were filled, Figure 3C,D). At this time point, healthy and pre-

malignant structures had the same filled multicellular architecture,

and did not exhibit distinguishable differences in creep compliance

(Fig. 3B, p = 0.963). Since changes in cell–cell connectivity would

be present at the 6–8 day time point, these data suggest that

neither single cell mechanics nor cell–cell connectivity can account

for the decreased compliance observed in pre-malignant struc-

tures. Notably, both of the 6–8 day filled structures (Fig. 3B)

exhibited similar creep responses to mature MCF10AT acini

(Fig. 2C). Assuming that cell–cell connectivity remains similar in

the 6–8 day acini and the mature acini, the data suggests that the

decreased stiffness of the acini coincides with hollow lumen

formation.

Predicted mechanical property changes due to structural
differences are consistent with measurements

As the creep responses of MCF10A and MCF10AT were only

different upon lumen formation, we developed a computational

model to investigate how differences in multicellular architecture

could affect the mechanical properties of the structure. Several

high-accuracy models of single-cell mechanics are available in the

literature, often employing a biphasic approach, in which the cell

cytoplasm is considered to have both a solid phase and a fluid

phase that interact [24–26]; similar approaches have also been

used to model collagen networks [27,28]. However, because our

measurements are on the multicellular scale and probed small

strains, we adopted a simpler modeling approach whereby the

acinus is considered to be an incompressible linear viscoelastic

solid immersed in an incompressible fluid. The boundary of the

acinus is described using the level set method [29] (see Simulation

Development).

To extract the simulation parameters from the mechanical

displacement data, we formulated a standard linear solid (SLS)

Figure 2. MCF10A and MCF10AT acini have different architectural and mechanical properties. Confocal immunofluorescence images of
(A) non-malignant MCF10A (hollow lumen) and (B) pre-malignant MCF10AT (filled lumen) acini, taken after 15 days of growth. Scale bars 25 mm. (C)
Creep compliance (mean 695% CI) of hollow and filled breast epithelial acini. (N = 32 and 31 acini for A and T respectively) (D) Differences in
mechanical response could be due to (1) different properties of single cells (2) changes in connectivity or (3) changes in multicellular architecture.
doi:10.1371/journal.pone.0101955.g002
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model, which has three parameters (Fig. S2). The simulation

parameters were then uniquely fit using the MCF10AT data, and

using a representative acinus diameter of 55 mm (see Simulation

Development). To investigate the effects of multicellular structure

alone, we simulated a filled sphere to approximate the MCF10AT

geometry (Fig. 4B), and a hollow spherical shell to approximate

the MCF10A geometry (Fig. 4C), using identical material

properties. A representative shell thickness of 10 mm, based on a

typical cell diameter and consistent with the literature [20] was

used. The simulation allows us to model the deforming shape and

stress distributions within the two acinus geometries (Fig. 4D). Our

model predicted approximately a 200% increase in steady state

stiffness for a filled structure relative to a hollow structure

(Fig. 4A). If the hollow shell allows for fluid flow out of the acinus

then the stiffness decreases further.

The increase in stiffness seen in simulation is noticeably larger

than in experiment, but there are a number of factors that make a

precise correspondence difficult to obtain. The acini exhibit large

variations in size, and may be more ellipsoidal than spherical. The

choice of shell thickness also plays an important role, since if more

material is present, it will lead to a stiffer response. Irrespective of

the quantitative differences, the results confirm that the multicel-

lular structure is a major determinant in the mechanical properties

of breast acini.

Multicellular architecture could affect perceived
mechanical microenvironment independent of material
properties

An advantage of computational modeling is the ability to probe

physical variables that might not be accessible by direct

measurement. One such variable is the change of perceived

stiffness from the perspective of an individual cell within the acinar

structures due to lumen filling. If multicellular architecture affects

the mechanical response of an acinus, individual cells in the acinus

could mechanically sense these differences in structure. Epithelial

cells have been shown to mechanosense through cadherin

junctions [12], and disrupting these cadherin junctions causes

formation of a disorganized, filled structure [13].

We considered a case corresponding to when a cell in an acinus

undergoes a very small isotropic contraction. If the cell was

embedded within an infinite elastic medium, then the contraction

would create a resistive force from the medium, which would be

proportional to the medium’s stiffness. Thus, the amount of

resistive force that the cell experiences in response to a fixed

contraction can be used to determine a perceived environmental

stiffness (see Simulation Development). To explore this within the

simulations, we defined several small volumes within the acini and

applied small changes to these volumes as a simple model of

cellular contraction. Using our multiphase simulation, we then

predicted the force–displacement response of the surrounding

structure, from which we can calculate a perceived stiffness. We

simulated single cells on the edges of both hollow and filled

architectures (Fig. 5A,B) with otherwise identical intrinsic me-

chanical properties. Our simulation predicts approximately a 20%

increase in perceived stiffness due to lumen filling alone (Fig. 5C).

Discussion

We investigated changes to mechanical properties of a breast

epithelial structure during lumen filling. Our data indicate that the

filling of the lumen leads to about a 60% increase in stiffness in our

AFM measurements. We observed this difference despite

MCF10A and MCF10AT cells having very similar mechanical

properties, and multicellular structures pre-lumen formation not

being detectably different from each other. From these data, we

concluded that the arrangement of cells in the acinus affects the

mechanical properties of the structure itself. Through numerical

simulation, we were able to confirm that the structural differences

could indeed explain the increase in the measured AFM stiffness.

Figure 3. Single cell mechanics and cell–cell connections do not explain the mechanical differences. Creep compliance (mean 695% CI)
of MCF10A and MCF10AT cells at (A) single cell state (N = 14 and N = 15 cells for A and T respectively) and (B) 6–8 day state before lumen formation
(N = 34 and N = 33 colonies for A and T respectively). Confocal immunofluorescence images of 8 day colonies of (C) MCF10A and (D) MCF10AT; 6–8
day time points were selected for testing because this was before lumina formed; scale bars 25 mm.
doi:10.1371/journal.pone.0101955.g003
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With the mechanical properties of the simulation calibrated to the

experimental data, we then showed that the stiffness that the cells

would perceive in the MCF10AT acinus would be increased by

20%. This arises purely due to the altered geometry of tissue

structure.

Our results highlight a key role for tissue structure in the

mechanosensing at the single cell level. Considering that a two-fold

increase in matrix stiffness leads to lumen filling [3], a 20%

increase in perceived stiffness due to multicellular structure alone

could be a potentially significant step towards loss of structure and

function in the mammary gland. In humans, many (but not all)

filled-lumen structures progress to form malignant tumors [1]. As

increased matrix stiffness drives the malignant phenotype through

a contraction-mediated process [3], an increase in perceived

stiffness could further destabilize the equilibrium of a multicellular

structure. Increases in ECM stiffness of similar magnitude have

been shown in mice to promote tumor progression and invasion

into the surrounding environment, mediated by integrin force

transduction [6].

In order for mechanical changes at cell–cell junctions to be

biologically significant, individual cells would have to be capable of

mechanosensing through cadherins or other cell–cell junctions. A

growing body of evidence suggests that cells can sense mechanical

forces through cadherins. The molecular details of how these

forces might be transduced is not known [30], but it is clear that

transmembrane applied force on E–cadherin results in tension on

the actin cytoskeleton through aE–catenin [31]. Furthermore,

vinculin localizes to E-cadherin when cells are pulled with

cadherin-coated beads [12], similar to behavior observed with

integrins [32]. Inter-cellular forces of epithelia are relatively large

(,100 nN, similar to cell–ECM forces) and are closely maintained

even in the presence of changes in cell morphology and contact

area [11]. However, this robust regulation appears to be lost in

epithelial-to-mesenchymal transition. Cells increase in area by

20%, adhesion forces drop by much more [33], and signalling

pathways may be more susceptible to environmental mechanics,

potentially contributing to oncogenesis.

Although the force transduction mechanism is not known,

cadherins have been shown to play an important role in

morphogenesis and tumor growth. Blocking E-cadherin function

in non-malignant breast epithelial cells leads to disorganized, non-

polarized structures [13]. This has been previously shown to affect

mechanical phenomena such as coherent rotation in breast

epithelia [34]. The molecular mechanisms behind cadherin-based

mechanosensing are still under investigation, and the techniques

described here provide additional tools to study this process.

Simulation Development

Development of the simulation framework
The simulations are carried out within a cube, using a right-

handed coordinate system in which the z-axis points upwards

(Figure 4B,C). The cube is filled with a background fluid that is

modeled using the Navier–Stokes equations

r
Lv

Lt
zr(v:+)v~{+pzn +2v ð1Þ

Figure 4. Mechanical differences are explained by the difference in multicellular architecture. (A) Simulation of hollow and filled
structures predicts decreased compliance (increased stiffness) of the structure associated with multicellular architecture. (B,C) Visualization of the 3D
plate compression simulation environment using in this study to model the MCF10AT and MCF10A acini geometries. The yellow cube represents the
simulation domain which is filled with incompressible fluid. The light blue object represents the deforming elastic–viscoelastic acinus, which is
compressed between the dark blue plates. (D) Cross-section through 3D simulation of plate for hollow and filled structures. For numerical
convenience, the influences of the plate and bottom surface are smoothed out across several layers of grid points, so they appear to overlap with the
top and bottom of the acini. Regions of higher pressure are visible at the locations where the plate and bottom surface make contact. In the spherical
shell simulation, a region of negative pressure is also visible, as the interior part of the shell is stretched during the deformation.
doi:10.1371/journal.pone.0101955.g004
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with the incompressibility constraint

+:v~0 ð2Þ

where v(x,t) is the fluid velocity, r is the density of the fluid, p(x,t)
is the fluid pressure, and n is the fluid viscosity. For the small length

scales considered, the term r(v:+)v corresponding to the fluid

inertia is negligible. This system of equations is simulated using the

finite-difference method on a fixed rectangular grid, with the

incompressibility constraint imposed via a finite-element projec-

tion step [35,36]. The simulations are written in C++ and carried

out on an Apple Mac Pro desktop with dual 2.4 GHz Intel Xeon

processors.

The boundary of the acinus is tracked using the level set method

[29], whereby an auxiliary function w(x,t) is introduced whose

value is the signed distance to the boundary, with w(x,t)w0
outside the acinus and w(x,t)v0 inside the acinus. The function

gives an implicit representation of the acinus boundary as the zero

contour w(x,t)~0, and solves some technical simulation challeng-

es, such as applying boundary conditions at the acinus–fluid

interface, and being able to rapidly determine whether a point is

inside or outside the acinus by checking the sign of w.

The acinus is modeled as a linear elastic–viscoelastic solid.

Given the small strains of 3% that are considered, we expect that a

linear model is a good approximation, and any possible nonlinear

behavior can be neglected. Within the acinus, the velocity follows

the equation

r
Lv

Lt
zr(v:+)v~{+pzn +2vz+:sz+:z ð3Þ

where s is an elastic stress tensor, and z is a viscoelastic stress

tensor. Here, we assume that the density and viscosity of the acinus

is the same as the fluid. Since we are interested in quasi-static

behavior, the viscosity will not play a significant role, and since

gravity is negligible at the small scales considered, the relative

difference in density will have only a limited effect.

Since the material is incompressible, there is no notion of a bulk

modulus due to volumetric deformations, and s and z are

therefore traceless. For small strains, the two tensors can be

updated using the equations

Ds

Dt
~2m1D,

Dz

Dt
~2m0D{2lz, ð4Þ

Figure 5. Multicellular architecture could affect the perceived mechanical microenvironment independent of material properties.
Cross-section through 3D simulations of single cell contraction in (A) filled and (B) hollow structures, showing the magnitude of shear stress,
Ds{ 1

3
1trsD: The single cell is shown by the black circle. (C) Perceived stiffness for a single cell in a hollow structure is approximately 20% lower than a

filled structure. The dashed horizontal line shows the actual stiffness of the acinus.
doi:10.1371/journal.pone.0101955.g005
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where the derivative D incorporates advection and tensor spin

components, and D~(+vz(+v)T )=2 is the rate-of-deformation

tensor. Here m0 and m1 are the viscoelastic and elastic shear moduli

respectively, and l is a viscoelastic damping parameter. Equation

4 has a very similar form to the SLS model, and is a natural three-

dimensional extension, with the parameters m0, m1, and l being

analogous to k0, k1, and g from a SLS one-dimensional linear

viscoelastic model.

To inform the simulation with properties based on our

measurements, we used a system identification method to fit our

creep data to the SLS model. This model (Fig. S2A) consists of a

spring (k1) in parallel with a spring–dashpot (k0,g). As a check, the

parameters obtained from this model (Fig. S2B–S2D) are

qualitatively consistent with the data presented in Figs. 2 and 3.

While other models may also fit our data, we use the SLS model

here simply to inform our simulation with a set of reasonable

mechanical parameters.

To carry out the compression of an acinus, a horizontal plate is

introduced into the simulation that is free to move in the vertical

direction, onto which a constant downward force of Fp is applied.

As it comes into contact with the acinus, it exerts a force on the

acinus causing it to deform, until it reaches equilibrium.

Figures 4B and 4C show typical snapshots of the simulation for

a sphere to model the MCF10AT geometry, and a spherical shell

to model the MCF10A geometry. In Figure 4C, four small tubes

are placed in the acinus, since the acini in experiments are

assumed not to be watertight, and allowing fluid to flow out of the

lumen can affect the mechanical response. However, simulations

using a watertight central cavity were also carried out.

Using the simulation to quantify the effects of geometry is

simplified by the fact that the mechanical model is linear, and that

the time scale for the acinus to reach quasi-static equilibrium, tE , is

much smaller than the viscoelastic relaxation time scale t. Since

the model is linear, if the elastic modulus is scaled by a factor a,

then the force response for a given, fixed displacement will be

scaled by a also. Over an intermediate time t1, where tE%t1%t,

the effective elastic modulus is given by m0zm1, whereas over a

much longer time t2 where t%t2, the effective elastic modulus is

given by m1. The force response at t2 will therefore be equal the

force response at t1 but scaled by a factor of m1=(m0zm1). Because

of this, it is possible to focus on simulations using elasticity only,

setting m0~l~0. By carrying out several simulations with

different displacements, a constant G representing a geometrical

scaling factor can be obtained, so that k1~am1. By the above

argument, it must also be true that (k0zk1)~a (m0zm1) and thus

k0~am0.

The simulations are carried out in dimensionless units that are

differentiated from their physical counterparts by writing them

with a tilde. To connect the simulations to experiments, a mass

scale M, length scale L, and time scale T must be introduced, after

which any simulation quantity can be related to a physical value

by multiplying by the appropriate scales. The simulation cube has

side length 3, the acinus has radius 1.1, and the fluid has unit

density ~rr~1. In the MCF10A simulations, the shell has thickness

0.4, which was chosen based on the confocal microscope images in

Figure 2. To model a 55 mm diameter acinus, a length scale of

L~25 mm is chosen, and by assuming the density is close to that

of pure water, so that r~103 kg=m3, then the mass scale must be

M~rL3~1:56|10{11 kg.

For each acinus geometry, simulations over a range of plate

forces were carried out, using ~mm0~1 and ~mm1~
~ll~0. For each

simulation, the change in height of the acinus once it has reached

equilibrium is recorded. By carrying out a linear fit of the height

changes with respect to the plate force, a spring constant ~kk0 can be

calculated. To estimate the shear modulus of the acinus, the value

of ~kk0~0:0193 for the solid sphere is compared to the value

k0~0:018 N=m for the MCF10A acinus. Since

~kk0~
k0T2

M
ð5Þ

it follows that the time scale is

T~

ffiffiffiffiffiffiffiffiffiffi
M~kk0

k0

s
~3:35|10{5 s: ð6Þ

Hence the shear modulus is

m1~
~mm0M

LT2
~557 Pa: ð7Þ

For an incompressible material where the Poisson ratio is 0.5,

the Young’s modulus is E~3 m1~1670 Pa. With the physical

scales now calibrated, the simulation data of plate force against

height change can now be plotted in physical units as in Fig. 3C.

This figure gives a value of k0 for the MCF10A acinus as

0:0055 N=m. Figure 4D shows plots of pressure in a vertical cross-

section through the hollow and filled acini.

Simulations of perceived stiffness
Suppose first that a single cell is centered at the origin in three-

dimensional material that is incompressible with Young’s modulus

E, which initially has no stress within it. A spherical region S
centered on the origin with radius R can be introduced, where R is

chosen to be large enough to enclose the cell. Suppose that the

cell’s volume decreases by a very small amount V . If the radial

symmetry is assumed, then it can be analytically derived that the

components of the stress tensor s can be expressed in spherical

coordinates (r, h, w) as

srr~
EV

3pr3
, shh~sww~{

EV

6pr3
, srh~srw~shw~0: ð8Þ

The total force exerted on the spherical region can therefore be

calculated by integrating the radial coordinate of the stress tensor

over the surface of sphere LS to obtain

F~

ð
LS

n:s:n dS~4pR2 EV

3pR2
~

4EV

3R
: ð9Þ

It therefore follows that force exerted on the cell will be

proportional to the shear modulus of the material. This provides a

method in which cells can probe their local environment: if a cell

contracts by a volume V and experiences a total radial force F ,

then the perceived shear modulus of the nearby material is given

by

E~
3RF

4V
: ð10Þ
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Using the simulations, we can now address how the effective

shear modulus will vary depending on where a cell is situated

within a given geometry. To carry this out, we modify the

incompressibility condition of Eq. 2 to include a small volume

removal, with the form

~++:~vv~~cc(1{ cos 2p~tt)(~qq{D~xx{~xxcD) ð11Þ

for ~ttv1 and D~xx{~xxcD{ ~qq. Values of the simulation constants of

~qq~0:15, ~cc~0:5, and ~RR~0:25 were used, corresponding to a

removal of 4:1 mm3 in physical units.

Three simulations carried out for a contraction in the center of a

sphere, at the edge of a sphere, and at the edge of a spherical shell.

For each one, the effective stiffness that a cell would perceive,

using Eq. 10, is shown in Figure 5C. In the center of the sphere,

the effective stiffness closely matches the real stiffness of the

material, as would be expected for a cell in an infinite medium.

However, the stiffness is significantly lessened for the other two

simulations, particularly for the spherical shell. While the precise

reductions in perceived stiffness are dependent on the parameters

used, a marked drop in perceived stiffness and a difference

depending on the geometrical configuration of the cells appear to

be general features. Using the parameters described here yields a

20% drop in stiffness due to lumen formation alone.

Figures 5A and 5B show plots of the magnitude of the deviatoric

stress tensor, computed as Ds{
1

3
1(trs)D, for a contraction at the

edge of sphere and spherical shell respectively. This quantity

provides a useful scalar measure of shear stress, and for this case is

more instructive than examining pressure, given that the analytic

solution in Eq. 8 predicts zero pressure. As expected, the shear

stresses decay rapidly as a function of distance from the

contraction region. Shear stresses are slightly higher for the

spherical shell, since it provides less resistance to deformation.

Methods

Cell culture
Mammary epithelial cells (MCF10A, Ha-ras MCF10AT) were

stably transfected with a lentiviral tet-off promoter to express

Histone-H2B labeled with eGFP ([37], Addgene plasmid 21210).

Following a previously established protocol [20], cells were

cultured in DMEM/F12 (UCSF Cell Culture Facility) supple-

mented with 5% horse serum (Invitrogen), 20 ng/mL EGF

(Peprotech), 0.5 mg/mL hydrocortisone (Sigma), 100 ng/mL

cholera toxin (Sigma), 10 mg/mL insulin (Sigma) and 16
penicillin–streptomycin (Invitrogen). Cells were passaged using

0.05% trypsin-EDTA (UCSF).

Cells were then fully embedded in laminin-rich, growth-factor

reduced extracellular matrix (Matrigel, BD Biosciences) at a

concentration of approximately 100 cells/mL using previously

described methods [20,38]. Cells embedded in gels were fed with

DMEM/F12 supplemented with 2% horse serum, 5 ng/mL EGF,

0.5 mg/mL hydrocortisone, 100 ng/mL cholera toxin, 10 mg/mL

insulin and 16 penicillin–streptomycin. For single cell experi-

ments, cells were extracted from the lrECM gels after twelve

hours. For multicellular experiments, structures were extracted

either between days 6–8 or days 14–20. Measurements were not

noticeably different as a function of number of days in culture.

Immunofluorescence
Embedded structures fixed as previously described [38].

Structures were pipetted directly onto a glass slide and fixed with

4% paraformaldehyde in phosphate-buffered saline (PBS). Sam-

ples were washed with PBS, permeabilized with 1% Triton-X 100,

and blocked with 3% BSA in PBS. Samples were stained with anti-

a6-integrin (BD Pharmingen 562473, 1:500) and mounted with

ProLong Gold antifade reagent (Invitrogen). Images were taken on

a Yokogawa spinning disk confocal microscope on a Zeiss Axio

Observer Z1 using a thermoelectrically cooled Cascade II

EMCCD and a 206 0.4NA objective.

Extraction from 3D culture
Single cells and multicellular structures were extracted from the

lrECM gels for AFM study with an adapted version of previously

described acinus-extraction method [38]. The lrECM gels were

quickly washed with PBS and then mechanically detached from

the culture well. To dissolve the matrix, embedded gels were

soaked in a iced PBS-EDTA mixture (0.5 M EDTA pH 8.0 from

Invitrogen diluted to 5.5 mM final concentration in PBS) for 10

minutes before being placed in a 1.5 mL tube with excess PBS-

EDTA for an additional 25 minutes. The resulting mixture was

gently centrifuged at 100–200g (single cells 3–5 minutes; acini

,10 s) and the supernatant was aspirated away. Cells/acini were

resuspended in CO2-independent media (Invitrogen) with 10%

fetal bovine serum and 16penicillin–streptomycin and plated on a

poly-L-lysine-coated (MW.300,000, P5899 Sigma-Aldrich) cover

slip for AFM experiments. Poly-L-lysine coatings were used to

allow samples to electrostatically attach without activating cell

adhesion machinery on the surface.

Surface preparation
Custom chambers for AFM experiments were made by UV-

gluing custom laser-cut acrylic walls (3 mm tall) to a pre-cleaned

(KOH base bath) cover slip. Chambers were coated with poly-L-

lysine immediately before the experiments by incubating for

twenty minutes with a 0.1 mg/mL solution of poly-L-lysine in

PBS. Chambers were washed ten times with deionized water and

dried with a nitrogen stream before plating samples.

Atomic force microscopy
AFM experiments were performed on a modified Veeco

Bioscope I mounted on a Zeiss Axiovert 25 inverted microscope

[39] and a Veeco Catalyst mounted on a Zeiss Axio Observer Z1.

Tipless silicon nitride MLCT (30–50 nN/mm, Veeco) cantilevers

were used for multicellular experiments, and tipless Arrow

cantilevers (10–20 nN/m, Nanoworld) were used for single cell

experiments. After a series of initial compression and relaxation

steps that ensured good contact between the samples and both the

cantilever and glass substrate, two successive compressive force

steps of equal size were applied to the sample using a closed-loop

piezoelectric. After each force step, the force was maintained for

60 seconds, and deformation and force were recorded as a

function of time. Force steps were followed by two similar force-

reduction steps, equal in size to the force steps. Data analysis was

performed on the first force reduction step. Experiments were

performed at 37uC and completed within two hours of plating on

poly-L-lysine. There was no discernible change in measured

mechanical properties over the course of the experiment. Each

sample was also imaged in brightfeld and eGFP epifuorescence

(nuclei), and its position on the coverslip was recorded to prevent

duplicate testing of the same sample.

Multicellular Architecture Influences Mechanics

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e101955



Parameter fitting
Quantification of the compliance of acini and single cells was

performed using techniques from system identification. A three-

parameter SLS model, as shown in Fig. S2A, is a simple linear

viscoelastic system that can capture the observed instantaneous

response followed by an exponential decay. We selected an eight-

second interval, beginning with the force step, to fit the data to the

SLS model using (k0,g) to characterize the viscoelastic response

and k1 to characterize the elastic response. Values of k1 are used

to compute the reported stiffnesses.

The parameter fitting was accomplished by first downsampling

with a moving average at 5 Hz to filter out high-frequency noise.

Next, MATLAB’s idgrey was used to solve for the state-space

parameters of the first-order ODE for a SLS body, given an initial

guess. To ensure a valid solution, the output SLS body was then

simulated with the measured force input. The simulated SLS body

and actual measured displacements were compared visually to

ensure a reasonable fit to the data. Measured responses that could

not be fit to an SLS model were discarded, usually due to excessive

noise in the measurement.

Statistical tests
Creep compliances were compared at 8 s time points using t-

tests as described in the results section with pv0:05 as the

significance threshold.

Supporting Information

Figure S1 Experimental configuration and typical creep
response. (A) Example image of an MCF10A acinus under a

tipless atomic force microscope cantilever. Scale bar 50 mm. (B)

Representative creep response of an MCF10A acinus. The thin

dotted red line shows a fit to the three-parameter Standard Linear

Solid model.

(EPS)

Figure S2 Standard Linear Solid model parameter
values for the experimental data. (A) Standard Linear Solid

model and (B–D) relevant parameters measured by fitting creep

curves using system identification techniques. Fit parameters were

used to extract mechanical properties for the model. Boxplots are

medians extending to the 25th and 75th percentiles. Min/max

positions are indicated by the ends of whiskers. Outliers are

defined as points beyond 1.5 times the interquartile range from the

nearest quartile marker.

(EPS)
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