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In this work near-field optical measurements of a corrugated grating coated with a 30 nm thick gold film are presented. The grating was

made using the polycarbonate corrugated substrate of a commercially available recordable CD as template. This has been proved to be a

versatile and low cost technique in producing large 1.6 µm period gratings. The study was carried out using a Scanning Near-Field Optical

Microscope (SNOM) working in both collection and reflection modes at two different wavelengths, 532 nm and 633 nm. The results illustrate

that the intensity patterns of near-field images are strongly polarization-dependent, even showing different periodicity of the localized fields

for orthogonal polarization states. When electric field of the light is polarized parallel to the grooves, the periodicity of the SNOM images is

coincident with the grating period, whereas when the light is polarized perpendicular to the grooves the SNOM pattern shows a periodicity

twice that of the corresponding topography of the grating. Numerical simulations of the SNOM data based on a two-dimensional Finite

Difference Time-Domain (2D-FDTD) model have been realized. The results of the simulations are in good agreement with the experimental

data, emphasizing the need of performing numerical simulation for the correct interpretation of SNOM data.
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1. Introduction

The origin of the scanning near-field optical microscopy

(SNOM) is based on Synge’s original idea [1]. Synge pro-

posed in 1928 that the resolution limit imposed by diffraction

could be overcome by illuminating a sample through a pin

hole of, say 100 nm aperture, located a distance from the

sample less than or equal to the pin hole diameter. It was

not until 1986, after the development of Scanning Tunnel-

ing Microscope (STM) that Pohl and colleagues developed

its optical equivalent, now known as SNOM [2]. The modern

version uses a metal coated optical fiber with a tip of nanome-

ters dimension through which the surface of the sample is il-

luminated. The intensity of the reflected or transmitted light

from the sample is then detected in the far-field condition us-

ing conventional microscope optics. In the case of using the

SNOM in the collection mode, the sample is illuminated uni-

formly from the back surface and the fiber tip is used to detect

the transmitted light field a few nanometers from the surface

of the sample. The SNOM microscopy has the added advan-

tage of simultaneously obtain information on the topography

of the sample (by means of an Atomic Force Microscopy,

AFM) and the intensity distribution of light in the near field.

This powerful combination has led to this technique to be one

of the most powerful tools in nano-photonics studies [3,4].

This article demonstrates the power of the SNOM tech-

nique on the direct observation of the intensity distribution

of light in the near field for the study of corrugated sur-

faces, and illustrates the potential of producing large and low

cost micro-structured grating using commercially available

recordable compact discs. The production of low cost, large

effective area corrugated structures with high homogeneity is

an important aspect in the commercialization of micro- and

nano-photonics devices [5].

The complexity of interpreting the SNOM patterns re-

quires the use of numerical simulation techniques. Thus, ex-

perimental results have been modeled using Finite Difference

Time-Domain (FDTD) simulation techniques in two dimen-

sions [6]. The results show a good accordance with experi-

mental data, demonstrating the versatility and power of this

simulation numerical technique in the interpretation and anal-

ysis of SNOM data.

2. Experimental

The diffraction grating used in this work was made from a

blank recordable compact disc, CD-R. The physical struc-

ture of a CD consists of a single polycarbonate plate which

contains one single spiral track distribution of approximately

rectangular cross section coated by a thin layer of photosensi-

tive polymer and covered with a reflective metallic layer, usu-
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ally aluminum. The process of removing the metallic coating

is relatively simple and is carried out mechanically. First, a

strong sticky tape is firmly pressed onto the metallic surface

of the disc, and then the tape is pulled away with the metal-

lic cover. The photosensitive polymer is removed then with

a mixture of ethanol and water. Finally, large and high qual-

ity corrugated samples of any size or dimension can be cut

from the substrate (about 4 cm2 for this study). After clean-

ing the surface of the sample with ethanol and water mixture,

a thin film of gold about 30 nm thick is evaporated on the

corrugated surface. The thickness and rate of deposition of

the gold layer was monitored in situ by a quartz microbal-

ance [7].

Both SNOM and AFM topography images were obtained

using a Nanonics Imaging Ltd. model MultiView 2000 TM

operating in either reflection or collection mode. Two illumi-

native wavelengths; 532 nm (doubled Nd:YAG) and 633 nm

(He-Ne laser) were used. Hereafter we will refer to the to-

pographic images as AFM, whilst near field optical measure-

ments will be cited as SNOM images. For data processing

we used the program WSxM 5.0 [8]. In reflection mode, the

sample is illuminated by the laser light through the SNOM

fiber with a tip diameter of 100 nm, and the light scattered

by the corrugated surface sample is collected through a 10×

objective and directed to an avalanche photodiode. In the col-

lection mode, the sample is illuminated from its back smooth

surface, and the transmitted light from the corrugated surface

is collected by the SNOM fiber tip. The collected light is then

sent through an optical fiber to a photomultiplier. The sam-

ples were analyzed by using linearly polarized light with two

different polarization directions: light with its electric field

vector parallel to the corrugated tracks direction, and light

having its electric field perpendicular to the tracks.

3. Experimental results and discussion

Figures 1 shows the AFM image of the corrugated structure

with the 30 nm thin film gold deposition. A periodicity of

1.6 µm with an average depth of the track of ∼120 nm and

600 nm wide are observed. These values are in accordance

with parameters of commercial compact discs.

AFM images and polarized near-field SNOM of the cor-

rugated structure, both taken simultaneously from the same

region, are presented in Figs. 2a and 2b, respectively. The

SNOM data were obtained under collection configuration by

using linearly polarized 532 nm laser light with its electric-

field vector parallel to the tracks.

It is clear from the figure that the period of the grating

measured by AFM is coincident with the period shown in

the images from SNOM measurements. Nevertheless, the

modulation pattern of both images are shifted one respect the

other. To make clear this fact, Fig. 2c shows the profiles

corresponding to the lines marked in Figs. 2a and 2b, which

corroborates a similar periodicity of SNOM data respect to

the topographic structure of the corrugated sample taken by

AFM. Also, the light intensity peaks are located at the center

FIGURE 1. AFM image of the metalized CD corrugated surface.

FIGURE 2. a) AFM image of the metalized CD surface. b) SNOM

image obtained in the collection mode recorded simultaneously to

the AFM image, for 532 nm light polarized along the tracks di-

rection. c) AFM and SNOM light intensity profiles along the blue

lines marked in Figures 2a and 2b.

position of the grooves, while the minima are situated at the

maxima of the metalized grating structure.

SNOMmeasurements were also performed by using light

linearly polarized perpendicular to the tracks. The intensity

map, shown in Fig. 3b besides the AFM map in Fig. 3a,

reveals a double periodicity for the SNOM image as com-

pared with the AFM image. This fact is more clearly seen in

Fig. 3c, where the height profile and the SNOM intensity pro-
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FIGURE 3. a) AFM image of the metalized CD surface. b) SNOM

image obtained in the collection mode recorded simultaneously to

the AFM image. c) AFM and SNOM light intensity profiles along

the lines marked in a) and b). SNOM image was recorded with the

electric field polarization perpendicular to the tracks route using the

532 nm wavelength source.

profile along the lines marked in Fig. 3a and 3b are plotted.

Apart from the double periodicity of the SNOM profile, the

minima of the SNOM signal are located at the position of the

maximum and minimum height of the corrugated structure.

The strong polarization dependence of the near field

found in these structures has been also observed in CD grat-

ing structures using a gold particle as the sensing probe [9].

The authors showed that the scattered light from the gold par-

ticle probe is strong at the groove edge, giving rise to split

peaks for p-polarization (perpendicular to the tracks). Also,

SNOM measurements of thin metallic multi-slits on dielec-

tric substrates have been reported [10]. For p-polarization,

a double periodicity of the SNOM pattern respect to the

0.76 µm period grating of the multi-slits array was found. In

this case, the marked distinct behavior found between orthog-

onal polarizations was attributed to the excitation to surface

plasmon polaritons. All these results, beside the results pre-

sented in this paper, indicate that polarized-SNOM is highly

recommended to model the optical/topographic structure of

the sample under consideration. In addition, numerical mod-

FIGURE 4. FDTD simulations of the SNOM light intensity profiles.

Continuous line: electric field polarization parallel to the tracks di-

rection. Dashed line: electric field polarization perpendicular to the

tracks direction. At the bottom, the simulated topographic profile

is drawn.

eling of the light propagation through the structures is imper-

ative for the correct interpretation of the SNOM patterns.

Along this line, numerical simulations of the light prop-

agation through the corrugated metallic structure have been

carried out by using a 2-Dimensional Finite Difference Time-

Domain (2D-FDTD) model [6]. The model includes the

treatment of dispersive materials and metals. The refractive

index of the dielectric substrate is assumed to be n = 1.45,

and the optical properties of the gold film has been modeled

by using the Drude model, with εp = 9.5, ω = 8.95 eV and

Γ = 0.069 eV [11]. The simulated topography of the cor-

rugated surface is shown at the bottom of Fig. 4, with the

geometric parameters taken from the AFM measurements,

besides a metallic layer of 30 nm. The FDTD simulations

reproduce the configuration used in the SNOM experiments.

In particular, a quasi-plane monochromatic wave is launched

from the substrate, propagating to the corrugated surface.

Once the light pattern in the whole computational window

reaches its steady state, the near field intensity is recorded

following the profile of the corrugated substrate. The im-

plementation of PML at the boundaries of the computation

region assures confident numerical results. The simulations

were performed using both linearly polarized light along the

tracks (TEy) and perpendicular to the tracks (TMy).

Figure 4 shows the results of the simulation for both po-

larizations using a continuous wave excitation at a wave-

length of 532 nm. Essentially, the simulations reflect closely

the experimental observations.

In the case of the parallel polarization, the profile has the

same periodicity as the modeled grating. Also, the peak po-

sitions are located at the height minima of the structure. For

light polarization perpendicular to the tracks direction, the

FDTD calculation shows a double periodicity compared to

the grating periodicity, and minima of light intensity are lo-
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cated at the centre of the top of the structure and between

the grooves. These numerical results are coincident with the

experimental results observed by SNOM.

In conclusion, this work has shown that corrugated struc-

tures of commercially available CDs can be potential large

surface area templates for low-cost photonic elements. These

metalized structures can be characterized by means of the

SNOM technique, where the use of polarized light is an im-

portant experimental aspect to be considered. Finally, FDTD

simulation is a powerful and fundamental numerical tool for

the correct interpretation of SNOM data.
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