28 research outputs found

    Polar and magnetic order in GaV4Se8

    Full text link
    In the present work, we provide results from specific heat, magnetic susceptibility, dielectric constant, ac conductivity, and electrical polarization measurements performed on the lacunar spinel GaV4Se8. With decreasing temperature, we observe a transition from the paraelectric and paramagnetic cubic state into a polar, probably ferroelectric state at 42 K followed by magnetic ordering at 18 K. The polar transition is likely driven by the Jahn-Teller effect due to the degeneracy of the V4 cluster orbitals. The excess polarization arising in the magnetic phase indicates considerable magnetoelectric coupling. Overall, the behavior of GaV4Se8 in many respects is similar to that of the skyrmion host GaV4S8, exhibiting a complex interplay of orbital, spin, lattice, and polar degrees of freedom. However, its dielectric behavior at the polar transition markedly differs from that of the Jahn-Teller driven ferroelectric GeV4S8, which can be ascribed to the dissimilar electronic structure of the Ge compound.Comment: 7 pages, 6 figures. Revised version according to suggestions of referee

    Characteristics of ferroelectric-ferroelastic domains in N{\'e}el-type skyrmion host GaV4_4S8_8

    Get PDF
    GaV4_4S8_8 is a multiferroic semiconductor hosting N{\'e}el-type magnetic skyrmions dressed with electric polarization. At Ts_s = 42K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts_s, ferroelectric domains are formed with the electric polarization pointing along any of the four <111>\left< 111 \right> axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the N{\'e}el-type skyrmion lattice emerging below TC_C=13\:K, the characteristics of polar domains in GaV4_4S8_8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4_4S8_8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 μ\mum. We expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manupulation of N{\'e}el-type skyrmions

    Relaxation dynamics of modulated magnetic phases in the skyrmion host GaV4S8: An ac magnetic susceptibility study

    Get PDF
    We report on the slow magnetization dynamics observed upon the magnetic phase transitions of GaV4S8, a multiferroic compound featuring a long-ranged cycloidal magnetic order and a N\'eel-type skyrmion lattice in a relatively broad temperature range below its Curie temperature. The fundamental difference between GaV4S8 and the chiral helimagnets, wherein the skyrmion phase was first discovered, lies within the polar symmetry of GaV4S8, promoting a cycloidal instead of a helical magnetic order and rendering the magnetic phase diagram essentially different from that in the cubic helimagnets. Our ac magnetic susceptibility study reveals slow relaxation dynamics at the field-driven phase transitions between the cycloidal, skyrmion lattice and field-polarized states. At each phase boundary, the characteristic relaxation times were found to exhibit a strong temperature dependence, starting from the minute range at low temperatures, decreasing to the micro- to millisecond range at higher temperatures

    Superparamagnetic properties of hemozoin

    Get PDF
    We report that hemozoin nanocrystals demonstrate superparamagnetic properties, with direct measurements of the synthetic hemozoin magnetization. The results show that the magnetic permeability constant varies from mu = 4585 (at -20 degrees C) to 3843 (+20 degrees C), with the values corresponding to a superparamagnetic system. Similar results were obtained from the analysis of the diffusion separation of natural hemozoin nanocrystals in the magnetic field gradient, with mu = 6783 exceeding the value obtained in direct measurements by the factor of 1.8. This difference is interpreted in terms of structural differences between the synthetic and natural hemozoin. The ab initio analysis of the hemozoin elementary cell showed that the Fe3+ ion is in the high-spin state (S = 5/2), while the exchange interaction between Fe3+ electron-spin states was much stronger than k(B)T at room temperature. Thus, the spin dynamics of the neighboring Fe3+ ions are strongly correlated, lending support to the superparamagnetism

    Evaluation of a novel magneto-optical method for the detection of malaria parasites

    Get PDF
    Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as approximately 40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/microL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/microL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs

    PFMCal: Photonic force microscopy calibration extended for its application in high-frequency microrheology

    No full text
    The present document is an update of the previously published MatLab code for the calibration of optical tweezers in the high-resolution detection of the Brownian motion of non-spherical probes. In this instance, an alternative version of the original code, based on the same physical theory, but focused on the automation of the calibration of measurements using spherical probes, is outlined. The new added code is useful for high-frequency microrheology studies, where the probe radius is known but the viscosity of the surrounding fluid maybe not. This extended calibration methodology is automatic, without the need of a user’s interface. A code for calibration by means of thermal noise analysis is also included; this is a method that can be applied when using viscoelastic fluids if the trap stiffness is previously estimated. The new code can be executed in MatLab and using GNU Octave. The previous version of this program (AEXH_v1_0) may be found at http://dx.doi.org/10.1016/j.cpc.2015.06.02
    corecore