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Background: Hemozoin is the pigment produced by some blood-feeding parasites. It demonstrates high
diagnostic and therapeutic potential. In this work the formation of co-called hemozoin “knobs” - the bile duct
ectasia filled up by hemozoin pigment - in Opisthorhis felineus infected hamster liver has been observed.

Methods: The O. felineus infected liver was examined by histological analysis and magnetic resonance imaging
(MRI). The pigment hemozoin was identified by Fourier transform infrared spectroscopy and high resolution
electrospray ionization mass spectrometry analysis. Hemozoin crystals were characterised by high resolution

Results: Hemozoin crystals produced by O. felineus have average length 403 nm and the length-to-width ratio
equals 2.0. The regurgitation of hemozoin from parasitic fluke during infection leads to formation of bile duct
ectasia. The active release of hemozoin from O. felineus during in vitro incubation has also been evidenced. It has
been shown that the hemozoin knobs can be detected by magnetic resonance imaging.

Conclusions: In the paper for the first time the characterisation of hemozoin pigment extracted from liver fluke
O. felineus has been conducted. The role of hemozoin in the modification of immune response by
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Background

The feature of metabolism of parasites is the potential
target for its detection and therapy. Hemozoin, also
known as “malaria pigment”, is a byproduct, formed
from the toxic heme moiety released during the digested
hemoglobin detoxification. Therefore hemozoin forma-
tion is an adaptation to hematophagy. This pigment first
identified and described for Plasmodium falciparum has
been found in other Plasmodium species and in the
series of blood-living parasite organisms: in the intracel-
lular protozoan Haemoproteus columbae [1], in the
trematodes Schistosoma mansoni [2, 3] and Echinostoma
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trivolvis rediae [4]. Moreover, hemozoin was found in
insect ectoparasite Rhodnius prolixus [5].

Hemozoin is a unique biocrystal, a distinguishing trait
of some blood-feeding organisms [6], it demonstrates high
diagnostic and therapeutic potential. Hemozoin has been
widely discussed as a candidate of target macromolecule
for parasitic disease treatment [7-9]. The immunomodu-
late effects of hemozoin and especially its role in regula-
tion of parasite-host interaction are also of a great interest
[10, 11]. In general hemozoin is recognized as a key factor
in the induction of malaria-associated immunosuppres-
sion [12, 13].

Nowadays, various approaches has been developed to
diagnose parasitic infections (mainly malaria) based on
hemozoin detection: light microscopy, polarization micros-
copy, RAMAN spectroscopy [14], chemo-luminescence
method [15], flow cytometry [16] and mass spectrometry
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(MS) analysis [17, 18]. The unique physical properties of
hemozoin have also been used as a basis for malaria diag-
nostic, e.g. photoacoustic detection [19, 20]. Thus magnetic
properties of hemozoin have been widely used for mag-
netic separation of the malaria-infected cells [21-23].
Several diagnostic methods, such as magneto-optic tech-
nology test (MOT-test) [24—26], laser induced photother-
mal heating of hemozoin [6, 27], nuclear magnetic
resonance and magnetic resonance relaxometry [28, 29]
have been developed on the basis of magnetic properties of
hemozoin crystal.

Opisthorchis felineus is a parasitic trematode wide-
spread in Europe and Russia [30], especially in Western
Siberia. This liver fluke settles in humans’ bile duct and
causes the opisthorchiasis similar to the O. viverrini in
South-East Asia. O. felineus infects a large number of
people with potential fatal consequences. In some areas
of Western Siberia (e.g. Tomsk region) up to 32.8 % of
the population is infected [31]. Nevertheless, metabolites
of O. felineus have been poorly studied.

During our study of liver fluke (O. felineus) infection
in hamster model we have observed bile duct ecstasias
filled by black-brown pigment. In this paper we provide
the evidence that the identified pigment is a hemozoin
identical to byproduct of O. felineus. Thus, the accumu-
lation of the hemozoin in bile duct of O. felineus in-
fected liver leads to the formation of knobs which can
be detected by magnetic resonance imaging (MRI).

Methods

Calcium chloride, sodium hydrogen carbonate, sodium
chloride, hematin, sodium hydroxide, sodium dodecyl
sulfate (SDS), phosphate buffer saline (PBS, tablet), Triton
X-100, dimethyl sulfoxide (DMSO) were purchased from
Sigma-Aldrich. Tris (Amresco), EDTA (AppliChem) were
applied. All chemicals were used as received. Milli-Q
(Millipore) water was used for all experiments.

Experimental opisthorchiasis model

Metacercariae of O. felineus were obtained from natur-
ally infected fish caught from fresh water reservoirs in
endemic areas of Western Siberia (Tomsk), Russia. The
muscular tissue and the subcutaneous tissue were
digested by pepsin-HCl. Viable metacercariae were col-
lected and identified by microscopy. Hamsters Mesocri-
cetus auratus were purchased from the Department of
Breeding and maintenance of small laboratory rodents
of the Institute of Bioorganic Chemistry Academicians
M.M. Shemyakin and U.A. Ovchinnikov. For conducting
the experiment 6- to 8-week-old male hamsters were
infected intragastrically with 50 metacercariae per ham-
ster. Hamsters were housed five in each cage under con-
ventional conditions and were fed with a stock diet and
water ad libitum. Ethical Approval: All experiments and
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the maintenance of experimental animals were performed
according to the guidelines of local Ethics Committee
of the Siberian State Medical University (No. 3808 from
15.09.2014).

The infected animals (n =4) were sacrificed at 5, 24
and 48 weeks postinfection, uninfected animals (7 =4)
were used as control on each stage. Animals were eutha-
nized by deep anesthesia with carbon dioxide. Four lobes
of the liver were examined for the presence of ecstasia
with black-brown pigment, followed by the histological
analysis.

To characterize the pigment (hemozoin) of the adult
worms, we collected samples of liver tissues avoiding
liver fluke habitat areas and samples of bile ducts with
pigment from six uninfected (control) and six infected
hamsters at the 5 week postinfection.

Histological analysis

The liver tissue or fluke was placed into 10 % buffered
formalin, and then embedded in paraffin. Tissue sections
were cut into 4-5 um-thick slices and stained with
hematoxylin and eosin. Histological analysis was per-
formed with the optical microscope Axiostar plus (Carl
Zeiss, Germany).

Hemozoin extraction

To extract hemozoin from tissues approximately 30 mg
of tissue was homogenized with the glass beads Precellys
Ceramic Kit (Bertin technologies, Belgium) in five vol-
umes of a solution containing 50 mM tris/HCI pH 8.0,
5 mM CaCl,, 50 mM NaCl and 1 % Triton X-100. To
extract hemozoin from a fluke, the same procedure was
used for one fluke. The homogenate was supplemented
with 1 % Proteinase K, incubated overnight at 37 °C and
centrifuged at 11,000 g for 40 min. The supernatant was
discarded, the pellet was washed in 2 % SDS, 10 mM
tris, pH 7.5 and then in 100 mM NaHCO3;, pH 9.0 and
roughly washed in the water with subsequent centrifuga-
tion for 10,000 g for 15 min [15].

Determination of hemozoin concentration

To determine hemozoin concentration the sample was di-
luted in 100 mM NaOH, 2 % SDS, 3 mM EDTA and ana-
lyzed by spectrophotometric method. Series of hematin
(10 pM - 1.2 nM) in 100 mM NaOH, 2 % SDS and
3 mM EDTA was used as a standard. The unknown
hemozoin concentration was calculated from the cali-
bration curve of the hematin concentration (nM) vs
optical density (A =401 nm) [15]. The amount of hemo-
zoin was expressed as nmol (hematin)/mg tissue or
nmol (hematin)/fluke.
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O. felineus in vitro incubation

Adult (5 weeks postinfection) O. felineus flukes were
taken from the bile ducts of hamster and incubated
for 2 h in RPMI 1640 culture medium (PanEco,
Russia) at 37 °C in an atmosphere of 5 % CO,. Adult
worms were placed in single wells of 12-well plates
(SPL Life Science) containing 3 ml RPMI 1640, sup-
plemented with 1 % (vol/vol) antibiotics (50 mkg/ml
streptomycin and 50 U/ml penicillin; PanEco, Russia)
and incubated for 72 h [32].

Fourier transform infrared spectroscopy (FTIR)

IR spectra were recorded on a FTIR-spectrometer
Spectrum One B with diffusion refraction accessory
(DRA) (Perkin Elmer, USA) in the range of 4000-
400 cm™! with 128 scans and at 4 cm™" resolution.

MS analysis

The extracted hemozoin or commercial hematin (Csy
H3,N,OsFe) samples were dissolved in 0.04 mL of
DMSO, diluted in 0.9 mL of methanol. The samples
were injected using a syringe pump (model 100, KD Sci-
entific Inc., Holliston, MA, USA) at a constant flow rate
of 0.24 ml/h. Positive ion mass spectra from 500 to 3000
(m/z) were obtained on a maXis impact HD ultra-high
resolution quadrupole time-of-flight mass spectrometer
(Bruker Daltonik GmbH, Germany) equipped with a
standard electrospray ionization (ESI) ion source. The
Tuning Mix ES-TOF G 1969-85000 (Agilent Technolo-
gies) was used for mass calibration. The spectra were
processed by Compass for otofSeries 1.7 (oTof Control
3.4; Bruker Compass Data Analysis 4.2).

Transmission electron microscopy (TEM)

For TEM analysis the samples of O.felineus extracted
hemozoin crystals were placed on carbon-coated Cu
grid. The TEM and HRTEM (high resolution TEM)
images of hemozoin crystals were obtained using
transmission electron microscope JEM-2200FS (JEOL,
Japan) with a Cs-corrector at 200 kV.

Biological samples (liver, bile duct or O. felineus
fluke) were fixed in 4 % p-formaldehyde in Hanks buf-
fer, pH 7.4. After fixation samples were post-fixed with
osmium tetroxide, dehydrated in alcohols of increasing
concentration and propylene oxide, and then embedded
in the Epon-Araldite mixture. Ultrathin unstained sec-
tions were observed in a Jem-1400 (JEOL, Japan) TEM.

MRI in vitro and ex vivo

All "H-MRI experiments were performed on horizontal
tomographic scanner with a magnetic field intensity of
11.7 T (Bruker, Biospec 117/16 USR, Germany) equipped
with a transmitter volume (500.3 MHz, with diameter of
72/89 mm, Bruker, Biospec, Germany) and a receiver
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surface (500.3 MHz, with the size of 123 x 64 x 31 mm,
Bruker, Biospec, Germany) 'H coils. T1 and T2 relaxation
maps of water hemozoin suspension phantoms were
recorded in order to investigate the MRI-contrast proper-
ties of hemozoin. For ex vivo MRI the liver was extracted
from hamster after gas euthanasia and placed in 50 cm?
polypropylene tube in PBS buffer. T1-weighted high reso-
lution images of hamster liver (slice thickness 1 mm; field
of view 4.0 x 4.0 cm; matrix 512 x 512 dots) were recorded
by RARE (rapid with relaxation enhancement) with the
pulse sequence parameters TR = 1.5 s, TE = 9.2 ms. The
signal intensities of each ROI (region-of-interest) in the T1
map were measured, T1 relaxation time data were calcu-
lated automatically by Paravision 5.0. [33]. Ethical Approval:
The experimental protocol has been approved by the Bio-
ethics Review Committee of the Institute of Cytology and
Genetics (No. 24 from 28.10.2014).

Statistical analysis

Statistical analyses were performed using IBM SPSS Sta-
tistics for Windows, Version 21.0 (Armonk, NY: IBM
Corp.). All parameters were treated as non-parametric
data. The data was expressed as median and interquar-
tile ranges. Independent data groups were compared
through Mann—Whitney test. The P value below 0.05
was considered as significant.

Results

Histological analysis of the infected liver

The visual analysis of O. felineus infected liver showed
that dark knobs - the bile duct ectasia filled by black-
brown pigment - can be found starting from 5 week
postinfection. These knobs increased in size in the liver
of infected animals in time of infection (Fig. la-c ). It’s
important to note that the size and number of the knobs
varied within the samples of the experimental group.
The morphological analysis showed that similar knobs
can be visualised not only on the surface but also inside
a liver. In the control group of uninfected hamster the
formation of the knobs has not been observed. The
histological analysis evidenced no pathological changes
in the liver and bile duct of the uninfected hamster
(Additional file 1: Figure. S1).

Histological analysis data demonstrates periductal fi-
brosis with inflammatory cell infiltration occurring
around the bile ducts of the O. felineus infected liver.
At the 48 week of infection the mighty pigment clumps
in bile duct and gallbladder wall were observed in the
liver of infected hamster (Fig. 1d, e). The great conges-
tion of pigment in gallbladder wall leads to chronic
cholecystitis with sharply expressed proliferation of the
epithelial cells and to the formation of the gallbladder
polyp. It is important to note that polyp stroma has
been filled with the pigment (Fig. le). The same



Pershina et al. Parasites & Vectors (2015) 8:459

Page 4 of 9

Fig. 1 Histological analysis of the liver of Opisthorchis felineus infected hamster. Macrophotograph of the liver of Opisthorchis felineus infected
hamster at (@) 5, (b) 24 and (c) 48 weeks postinfection. The black-brown pigment (hemozoin) forms the increasing hemozoin knobs. Histological
analysis evidenced the hemozoin congestions in (d) small bile duct, hematoxylin and eosin staining (x400), (e) gallbladder wall and polypoid
lesions of the gallbladder, hematoxylin and eosin staining (x200) and (f) O. felineus gut, hematoxylin and eosin staining (x400)

granular black-brown pigment was observed in guts of
the fluke (Fig. 1f).

Hemozoin identification

The bile duct ectasia samples, samples of non-damaged
liver tissue and O. felineus flukes were extracted from
experimental hamsters and then pigment was extracted
according to the protocols for hemozoin purification. The
pigment remained insoluble during SDS and sodium bi-
carbonate at washing steps and it had characteristic hemo-
zoin UV-visible spectra (Additional file 1: Figure. S2). In
0.1 M NaOH the pigment demonstrated an absorption
spectrum identical to monomeric heme [3].

The pigment was also identified by MS and FTIR ana-
lysis as hemozoin. For the FTIR analysis the black-brown
pigment was extracted from bile duct ectasia. On the
FTIR spectra the characteristic hemozoin bands at 1662
and 1209 cm ™" related to C = O and C-O stretch vibration
of the carboxylate group coordinated to the Fe (III) center
were detected [34]. The FTIR spectra of hemozoin ex-
tracted from bile duct ectasia and O. felineus were identi-
cal (Fig. 2).

The Laser desorption mass spectrometry (LDMS)
method is successfully used for hemozoin detection and
identification in biological samples [4, 18, 35]. In these
studies the low resolution mass-spectra of hemozoin
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Fig. 2 Fourier transform infrared spectroscopy (FTIR) of hemozoin.
FTIR spectra of (@) hemozoin extracted from bile duct ectasia of
infected hamster liver, (b) hemozoin extracted from Opisthorchis
felineus and (c) commercial hematin (Sigma-Aldrich)

were obtained via direct laser ultraviolet desorption.
The mass-spectra exhibited a radical molecular cation
(M+ with nominal mass 616 Da), corresponding to an
individual ionized heme molecule, and several charac-
teristic heme fragment ions.

In our work the positive high resolution MS spectra
were obtained using electrospray ionization (ESI) a so-
called ‘soft ionization’ technique. Therefore the exten-
sive fragmentation has not occurred. During the sample
preparation the hemozoin was dissolved in DMSO to
heme. In the mass-spectra of the sample the intensive
molecular cation M+ at m/z 616.1777 with satisfactory
accuracy corresponds to the expected molecular ion
[C34H3,FeN,O4]" with calculated mass 616.1768 Da
(Fig. 3). The mass-specter of hematin commercial sam-
ple (+616.1780) was similar. Also cluster peak with
[C3,H3,FeN,O, + DMSO]" ions mass of +694.191 Da
has been detected in both mass-spectra.

Transmission electron microscopy (TEM) characterization
of hemozoin

Hemozoin crystals produced by the O. felineus were lath
shaped with lengths about 100-600 nm and average
length-to-width ratio about 2.0. The corresponding Fast
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Fig. 3 High resolution electrospray ionization (ESI) mass
spectrometry analysis. The fragments of high resolution positive ion
ESI mass spectra of (a) extracted from Opisthorchis felineus hemozoin
in DMSO solution, (b) commercial hematin (Sigma-Aldrich) sample
and () simulated mass-spectrum of [Cs4Hs,FeN,O,]" ion

Fourier transform (FFT) image confirmed that the iso-
lated hemozoin crystals exhibited very regular lattice
fringes with a spacing of 12.0 A emphasizing that the
crystals tended to lie on their {100} or {100} faces (Fig. 4
and Additional file 1: Figure. S3). The determined lattice
spacing of hemozoin crystals produced by O. felineus is
consistent with the corresponding for synthetic crystals
and hemozoin crystals from P. falciparum (varied from
11.9 to 12.6 A) [36]. Parameters of external size of ex-
tracted hemozoin crystals produced by O. felineus and
produced by P. falciparum hemozoin are slightly differ-
ent. The hemozoin crystals produced by P. falciparum
have average length 500 nm (from 180 to 1400 nm) and
length-to-width ratio 3.4. By no surprise since hemozoin
crystals extracted from various species such as P. falcip-
arum, S. mansoni and H. columbae also have different
morphology [1].

Hemozoin dynamics in O. felineus

In TEM examination of O. felines ultrastructure a large
number of hemozoin crystals were found at the bottom
of parasite gut and less in the oral sucker area (Fig. 5a).
The average length of the hemozoin crystals was
around 403 (232+615) nm, however it varied from
about 99-1024 nm (Additional file 1: Figure. S4), an
average length-to-width ratio was equal to 2.0 (1.6+2.6).
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to lie on their {100} or {100} faces

Fig. 4 Transmission electron microscopy (TEM) analysis of extracted hemozoin crystals. (a, b, ¢) Dark field TEM images of hemozoin crystals
extracted from Opisthorchis felineus (d, € HRTEM image of hemozoin crystals, corresponding FFT image (in the left insert box) and an
enlargement of the region (in the right insert box), exhibited regular lattice fringes with a spacing of 12.0 A, confirming that the crystals tended

No crystals were found in utherus, testes, vitelline, nor
in a tegument of the fluke. It is important to note that
hemozoin crystals were clearly observed in bile duct
lumen of the infected animals (Fig. 5b).

The ability of the fluke to regurgitate hemozoin crystals
in hosts’ bile duct leads to its accumulation in the parasite
habitat area and formation of hemozoin knobs. The spec-
trophotometry revealed that the concentration of hemo-
zoin in the knobs was 73-fold higher than in the liver
parenchyma - 821.1 (536.4+934.0) and 8.4 (7.7+13.2) nmol
(hematin)/g, respectively (p = 0.028).

Obviously, the concentration of hemozoin in parasite
is not constant. Distribution of the hemozoin in adult
fluke extracted from the liver of 6 infected hamsters is
shown in Fig. 6a. The calculated median of hemozoin
concentration in O. felineus was equal to 3.9 (2.07+5.09)
nmol (hematin) per fluke according to spectrophotom-
etry. It was noted that this parameter varied from 0.08
to 7.66 nmol per fluke.

The ability of hemozoin to be released was clearly evi-
dent in the cultural experiments. The flukes removed
from an infected liver were divided into two groups (n =
11); one of them was incubated in RPMI medium for
3 days. After incubation in vitro the hemozoin was prac-
tically absent in the preincubated flukes (p < 0.0001)

(Fig. 6b). Thus the fluke loses the hemozoin during the
incubation. This fact is important to consider during any
investigation of a parasite or during their extract. It is
recommended to exclude the worm preincubation step
bearing in mind that hemozoin possess unique proper-
ties and contribute to the immune response.

Ex vivo liver MRI

In MRI phantom experiments of water suspension of the
extracted hemozoin we have not observed any contrast
properties in both T1l-and T2-weighted sequences. Al-
though the ex vivo MRI of the O. felineus infected liver
clearly detected significantly decreasing intensity of the
signal on T1-weighted image in hemozoin concentration
zone (Fig. 7). In hemozoin knobs T1 values are 5-fold
shorter than T1 of liver parenchyma. These are equal to
279 msec and 1401 msec, respectively. Thus, hemozoin
knobs can be detected as dark areas in the liver tissue in
T1-weighted MRI scans.

We suppose that weaker MRI signal in the zone of
hemozoin accumulation in comparison with surrounding
tissue is detected due to high hydrophobicity of the pig-
ment. This feature can be used for MRI visualisation of
hemozoin clumps for diagnostic of the parasitic diseases.
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Fig. 6 The hemozoin concentration in Opisthorchis felineus fluke. The
hemozoin concentration in Opisthorchis felineus extracted from (a)
six infected hamster at 5 week postinfection and (b) an infected
hamster liver at 5 week postinfection before and after 3-days in vitro
incubation in RPMI (p < 0.0001). The Mann-Whitney test was applied

Fig. 5 Transmission electron microscopy (TEM) analysis of hemozoin
crystals observed in vivo. TEM images of hemozoin crystals in (a)
Opisthorchis felineus gut and (b) bile duct lumen of O. felineus

infected hamster (at 5 week postinfection)

Discussion

O. felineus fluke produces hemozoin similar to other
blood-feeding parasites. Previously Sripa and co-workers
have observed black-brown pigment in the gut of the
adult worm O. felineus. They have assumed that it can
be an acid hematin, bilirubin, or even melanin [37].

It is important to emphasize that O. felineus rapidly
regurgitated hemozoin crystals. It is well known that
blood-living parasite ejects hemozoin in a host blood-
stream. In bloodstream hemozoin is captured by macro-
phages migrating through the body and is accumulated
in different organs [15]. The hemozoin is often observed

in a liver and a spleen, less in lungs and kidneys during
malaria infection [38]. The ability of parasites to regurgi-
tate the hemozoin in blood circulation of host with sub-
sequent accumulation in a liver is described for S.
mansoni [11]. In the case of opisthorchiasis the hemo-
zoin is accumulated in hosts’ bile duct and leads to
hemozoin knobs formation. These hemozoin clumps
cause the bile duct occlusion, mechanical damage and
inflammation (cholecistitis), stimuli proliferation and
neoplastic deformation (polyp). The fact of hemozoin
detection in gallbladder provides a new insight in the
pathogenesis of the gallbladder disease associated with
O. felineus infection.

Olivera and co-workers earlier emphasized that hemo-
zoin may play an essential role in the host-protective
granulomatous response modulating and moderating [11].
On the other hand, O. felineus is able to modify the host
immune response, namely, the opisthorchiasis infection
diminishes genetic risk of atopic bronchial asthma [39]
and prevents the food sensabilization [40]. Additionally,
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Fig. 7 Detection of hemozoin knobs by magnetic resonance
imaging. (@) The macrophotograph of Opisthorchis felineus infected
hamster liver at 12 week postinfection. The hemozoin knobs in bile
duct are marked by pointer; (b) ex vivo MRI of this liver in PBS buffer.
The hemozoin knobs are visualised as dark areas

the monocyte-derived dendritic cells from peripheral
blood of bronchial asthma patients stimulated with O. feli-
neus extract in vitro exhibit decreased expression level of
the most important costimulatory molecules CD86 on the
cell surface [41]. Taking into account the immunosuppres-
sive properties of hemozoin [13] and its ability to inhibit
human monocytes differentiation and maturation [42], we
supposed that the hemozoin production and its excretion
can be the drive factor of the immunoregulatory activity
of O. felineus. Considering the above, the key question for
further research is a way by which the hemozoin crystals
could pass a bile duct and be captured by macrophages.

Conclusions

In summary, we have demonstrated that the liver fluke
O. felineus produced a pigment hemozoin specific for
some blood-feeding parasites and regurgitated it in a
bile duct of host organism. This process leads to forma-
tion of massive hemozoin clumps so-called hemozoin
knobs. The hemozoin knobs can be detected by T1-
weigthened MRI. Taken into account the immunosup-
pressive properties of hemozoin, we can assume that
this biomolecule plays a key role in modification of an
immune system response during O. felineus infection.
Thus, the investigation of hemozoin effects on immune

Page 8 of 9

system of O. felineus infected persons especially in the
view of influencing on the progress of comorbidity im-
munopathology disease is very important.

Additional file

Additional file 1: Hemozoin “knobs” in Opisthorchis felineus
infected liver. Figure S1. Histological analysis of the liver of
uninfected hamster (control). Macrophotograph of the liver of
uninfected hamster (control) at (a) 5, (b) 24 and (c) 48 weeks after the
start of the experiment. Histological analysis of the liver of uninfected
hamster (control) at (d) 5, (e) 24 and (f) 48 weeks after the start of the
experiment, hematoxylin and eosin staining (x200). Figure S2.
UV-visible spectra of hemozoin (in water) extracted from Opisthorchis
felineus (1) and the same amount of hemozoin dissolved in NaOH, SDS,
EDTA buffer. Figure S3. The intensity profile of the designated area in
Fig. 2e in article. Figure S4. The histogram of hemozoin crystals length
in Opisthorchis felineus gut (PDF 529 kb)
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