In the present work, we provide results from specific heat, magnetic
susceptibility, dielectric constant, ac conductivity, and electrical
polarization measurements performed on the lacunar spinel GaV4Se8. With
decreasing temperature, we observe a transition from the paraelectric and
paramagnetic cubic state into a polar, probably ferroelectric state at 42 K
followed by magnetic ordering at 18 K. The polar transition is likely driven by
the Jahn-Teller effect due to the degeneracy of the V4 cluster orbitals. The
excess polarization arising in the magnetic phase indicates considerable
magnetoelectric coupling. Overall, the behavior of GaV4Se8 in many respects is
similar to that of the skyrmion host GaV4S8, exhibiting a complex interplay of
orbital, spin, lattice, and polar degrees of freedom. However, its dielectric
behavior at the polar transition markedly differs from that of the Jahn-Teller
driven ferroelectric GeV4S8, which can be ascribed to the dissimilar electronic
structure of the Ge compound.Comment: 7 pages, 6 figures. Revised version according to suggestions of
referee