223 research outputs found
The strong weak convergence of the quasi-EA
In this paper, we investigate the convergence of a novel simulation scheme to the target diffusion process. This scheme, the Quasi-EA, is closely related to the Exact Algorithm (EA) for diffusion processes, as it is obtained by neglecting the rejection step in EA. We prove the existence of a myopic coupling between the Quasi-EA and the diffusion. Moreover, an upper bound for the coupling probability is given. Consequently we establish the convergence of the Quasi-EA to the diffusion with respect to the total variation distance
Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and complexity
We propose a multi-step Richardson-Romberg extrapolation method for the
computation of expectations of a diffusion
when the weak time discretization error induced by the Euler scheme admits an
expansion at an order . The complexity of the estimator grows as
(instead of ) and its variance is asymptotically controlled by considering
some consistent Brownian increments in the underlying Euler schemes. Some Monte
carlo simulations carried with path-dependent options (lookback, barriers)
which support the conjecture that their weak time discretization error also
admits an expansion (in a different scale). Then an appropriate
Richardson-Romberg extrapolation seems to outperform the Euler scheme with
Brownian bridge.Comment: 28 pages, \`a para\^itre dans Monte Carlo Methods and Applications
Journa
CLTs and asymptotic variance of time-sampled Markov chains
For a Markov transition kernel P and a probability distribution
μ on nonnegative integers, a time-sampled Markov chain evolves according
to the transition kernel Pμ = Σkμ(k)Pk. In this note we obtain CLT
conditions for time-sampled Markov chains and derive a spectral formula
for the asymptotic variance. Using these results we compare efficiency of
Barker's and Metropolis algorithms in terms of asymptotic variance
Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion
We consider continuous-time diffusion models driven by fractional Brownian motion. Observations are assumed to possess a nontrivial likelihood given the latent path. Due to the non-Markovian and high-dimensional nature of the latent path, estimating posterior expectations is computationally challenging. We present a reparameterization framework based on the Davies and Harte method for sampling stationary Gaussian processes and use it to construct a Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference. The algorithm is based on a version of hybrid Monte Carlo simulation that delivers increased efficiency when used on the high-dimensional latent variables arising in this context. We specify the methodology on a stochastic volatility model, allowing for memory in the volatility increments through a fractional specification. The method is demonstrated on simulated data and on the S&P 500/VIX time series. In the latter case, the posterior distribution favours values of the Hurst parameter smaller than 1/2 , pointing towards medium-range dependence
On the convergence of adaptive sequential Monte Carlo methods
In several implementations of Sequential Monte Carlo (SMC) methods it is natural and important, in terms of algorithmic efficiency, to exploit the information of the history of the samples to optimally tune their subsequent propagations. In this article we provide a carefully formulated asymptotic theory for a class of such adaptive SMC methods. The theoretical framework developed here will cover, under assumptions, several commonly used SMC algorithms [Chopin, Biometrika 89 (2002) 539–551; Jasra et al., Scand. J. Stat. 38 (2011) 1–22; Schäfer and Chopin, Stat. Comput. 23 (2013) 163–184]. There are only limited results about the theoretical underpinning of such adaptive methods: we will bridge this gap by providing a weak law of large numbers (WLLN) and a central limit theorem (CLT) for some of these algorithms. The latter seems to be the first result of its kind in the literature and provides a formal justification of algorithms used in many real data contexts [Jasra et al. (2011); Schäfer and Chopin (2013)]. We establish that for a general class of adaptive SMC algorithms [Chopin (2002)], the asymptotic variance of the estimators from the adaptive SMC method is identical to a “limiting” SMC algorithm which uses ideal proposal kernels. Our results are supported by application on a complex high-dimensional posterior distribution associated with the Navier–Stokes model, where adapting high-dimensional parameters of the proposal kernels is critical for the efficiency of the algorithm
Error bounds and normalising constants for sequential monte carlo samplers in high dimensions
In this paper we develop a collection of results associated to the analysis of the sequential Monte Carlo (SMC) samplers algorithm, in the context of high-dimensional independent and identically distributed target probabilities. TheSMCsamplers algorithm can be designed to sample from a single probability distribution, using Monte Carlo to approximate expectations with respect to this law. Given a target density in d dimensions our results are concerned with d while the number of Monte Carlo samples, N, remains fixed. We deduce an explicit bound on the Monte-Carlo error for estimates derived using theSMCsampler and the exact asymptotic relative L2-error of the estimate of the normalising constant associated to the target. We also establish marginal propagation of chaos properties of the algorithm. These results are deduced when the cost of the algorithm is O(Nd2). © Applied Probability Trust 2014
Sequential Monte Carlo methods for Bayesian elliptic inverse problems
In this article, we consider a Bayesian inverse problem associated to elliptic partial differential equations in two and three dimensions. This class of inverse problems is important in applications such as hydrology, but the complexity of the link function between unknown field and measurements can make it difficult to draw inference from the associated posterior. We prove that for this inverse problem a basic sequential Monte Carlo (SMC) method has a Monte Carlo rate of convergence with constants which are independent of the dimension of the discretization of the problem; indeed convergence of the SMC method is established in a function space setting. We also develop an enhancement of the SMC methods for inverse problems which were introduced in Kantas et al. (SIAM/ASA J Uncertain Quantif 2:464–489, 2014); the enhancement is designed to deal with the additional complexity of this elliptic inverse problem. The efficacy of the methodology and its desirable theoretical properties, are demonstrated for numerical examples in both two and three dimensions
Besov priors for Bayesian inverse problems
We consider the inverse problem of estimating a function from noisy,
possibly nonlinear, observations. We adopt a Bayesian approach to the problem.
This approach has a long history for inversion, dating back to 1970, and has,
over the last decade, gained importance as a practical tool. However most of
the existing theory has been developed for Gaussian prior measures. Recently
Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct
Besov prior measures, based on wavelet expansions with random coefficients, and
used these prior measures to study linear inverse problems. In this paper we
build on this development of Besov priors to include the case of nonlinear
measurements. In doing so a key technical tool, established here, is a
Fernique-like theorem for Besov measures. This theorem enables us to identify
appropriate conditions on the forward solution operator which, when matched to
properties of the prior Besov measure, imply the well-definedness and
well-posedness of the posterior measure. We then consider the application of
these results to the inverse problem of finding the diffusion coefficient of an
elliptic partial differential equation, given noisy measurements of its
solution.Comment: 18 page
Sampling constrained probability distributions using Spherical Augmentation
Statistical models with constrained probability distributions are abundant in
machine learning. Some examples include regression models with norm constraints
(e.g., Lasso), probit, many copula models, and latent Dirichlet allocation
(LDA). Bayesian inference involving probability distributions confined to
constrained domains could be quite challenging for commonly used sampling
algorithms. In this paper, we propose a novel augmentation technique that
handles a wide range of constraints by mapping the constrained domain to a
sphere in the augmented space. By moving freely on the surface of this sphere,
sampling algorithms handle constraints implicitly and generate proposals that
remain within boundaries when mapped back to the original space. Our proposed
method, called {Spherical Augmentation}, provides a mathematically natural and
computationally efficient framework for sampling from constrained probability
distributions. We show the advantages of our method over state-of-the-art
sampling algorithms, such as exact Hamiltonian Monte Carlo, using several
examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian
bridge regression, reconstruction of quantized stationary Gaussian process, and
LDA for topic modeling.Comment: 41 pages, 13 figure
Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments
The analysis of site effects is very important since the amplification of
seismic motion in some specific areas can be very strong. In this paper, the
site considered is located in the centre of Nice on the French Riviera. Site
effects are investigated considering a numerical approach (Boundary Element
Method) and are compared to experimental results (weak motion and
microtremors). The investigation of seismic site effects through numerical
approaches is interesting because it shows the dependency of the amplification
level on such parameters as wave velocity in surface soil layers, velocity
contrast with deep layers, seismic wave type, incidence and damping. In this
specific area of Nice, a one-dimensional (1D) analytical analysis of
amplification does not give a satisfactory estimation of the maximum reached
levels. A boundary element model is then proposed considering different wave
types (SH, P, SV) as the seismic loading. The alluvial basin is successively
assumed as an isotropic linear elastic medium and an isotropic linear
viscoelastic solid (standard solid). The thickness of the surface layer, its
mechanical properties, its general shape as well as the seismic wave type
involved have a great influence on the maximum amplification and the frequency
for which it occurs. For real earthquakes, the numerical results are in very
good agreement with experimental measurements for each motion component.
Two-dimensional basin effects are found to be very strong and are well
reproduced numerically
- …
