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Abstract In this paper, we investigate the convergence of a novel simulation scheme
to the target diffusion process. This scheme, the Quasi-EA, is closely related to the
Exact Algorithm (EA) for diffusion processes, as it is obtained by neglecting the
rejection step in EA. We prove the existence of a myopic coupling between the Quasi-
EA and the diffusion. Moreover, an upper bound for the coupling probability is given.
Consequently we establish the convergence of the Quasi-EA to the diffusion with
respect to the total variation distance.

Keywords Simulation of SDEs · Biased Brownian Motion · Exact simulation

Mathematics Subject Classification 65C05 · 65C35

1 Introduction

In this paper, we shall present two convergence results about a novel simulation scheme
to the target diffusion process. This scheme is closely related to the Exact Algorithm
(EA) for the simulation of diffusion process which was introduced in [1]. In particular,
the simulation scheme we consider is essentially EA without the acceptance–rejection
correction.

This scheme (which we call the Quasi-EA) is studied for two reasons. Firstly, we
are interested in the properties of Quasi-EA as a simulation scheme in its own right.
Secondly, a thorough understanding of Quasi-EA contributes to a fuller understanding
of EA scheme itself.
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The main appeal of EA is that it allows for the exact simulation (i.e., free from any
time discretisation error) of any skeleton of the diffusion sample path. Moreover, it is
possible to simulate exactly from some classes of path-dependent functionals of the
diffusion process. Because EA plays a central rule in our work, we briefly introduce
the main ideas behind EA. For a more exhaustive exposition of EA, we refer to [2]
and [3].

We consider the diffusion process Y a unique strong solution of the Stochastic
Differential Equation (SDE)

dYt = b (Yt ) dt + σ (Yt ) dBt 0 ≤ t ≤ T (1)

Y0 = y,

where B is scalar Brownian Motion (BM) on the bounded time interval.
We make the mild assumptions that σ is continuously differentiable and strictly

positive, that b is continuously differentiable, and that the diffusion is non-explosive.
These assumptions are more than enough to guarantee the existence of a unique strong
solution to the SDE (see for example Sect. V.10 of [10]). These assumptions also guar-
antee the existence and uniqueness of a bijective function η such that the transformed
diffusion process Xt := η (Yt ) satisfies the SDE

dXt = α (Xt ) dt + dBt 0 ≤ t ≤ T (2)

X0 = x := η (y) .

The drift coefficient α takes the form:

α(x) = b(η−1(x))

σ (η−1(x))
− σ ′(η−1(x)) ,

and inherits continuous differentiability from b and σ .
From now on the SDE (2) will be our starting point.
Let Qx

T and Wx
T denote the law of the diffusion X and the law of a BM, respectively,

on [0, T ] both started at x . From now on the following hypotheses are assumed to hold:

• ∀x ∈ X Qx
T � Wx

T and the Radon–Nikodym derivative is given by Girsanov’s
formula:

dQx
T

dWx
T

(ω) = exp

⎧
⎨

⎩

T∫

0

α (ωs) dωs − 1

2

T∫

0

α2 (ωs) ds

⎫
⎬

⎭
(3)

• α is continuously differentiable on X;
• α2 + α′ is bounded below on X.

We introduce Biased Brownian Motion (BBM) Z and its law Zx
T . This process is

defined as a BM on [0, T ] started at x and conditioned on having its terminal value
ZT distributed according to the density
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hx,T (u) := ηx,T × exp

{

A (u) − (u − x)2

2T

}

. (4)

Here A (u) := ∫ u
c α (r) dr for some c ∈ X and the normalising constant ηx,T is

assumed to be finite. Hence conditionally on the value of ZT the process Z is distributed
as a Brownian Bridge (BB). Given the hypothesis, it is possible to prove that

dQx
T

dZx
T

(ω) = ηx,T exp {−A (x)} exp

⎧
⎨

⎩
−

T∫

0

α2 + α′

2
(ωs) ds

⎫
⎬

⎭
(5)

∝ exp

⎧
⎨

⎩
−

T∫

0

φ (ωs) ds

⎫
⎬

⎭
≤ 1, (6)

where φ (u) := (
α2 (u) + α′ (u)

)
/2 − infr∈X

(
α2 (r) + α′ (r)

)
/2. Equation (6) sug-

gests the use of a rejection sampling algorithm to generate realisations from Qx
T .

However, it is not possible to generate a sample from Z , Z being an infinite dimen-
sional variate, and moreover it is not possible to compute analytically the value of the
integral in (6). For ease of exposition, we only consider the case of EA1, where α2 +α′
is assumed to be bounded. It should be noted that this hypothesis can be weakened or
even removed; see [2,3].

We denote by m the finite supremum of φ. Let � = (X , Ψ ) be a unit rate Poisson
Point Process (PPP) on [0, T ]× [0, m], and let N be the number of points of Φ below
φ (ωs) conditionally on a path ω. If the event 
 is defined as 
 (ω,Φ) := {N = 0} it
follows that

Pr [
|ω] = exp

⎧
⎨

⎩
−

T∫

0

φ (ωs) ds

⎫
⎬

⎭
. (7)

This equivalence is an immediate consequence of the properties of PPPs. The lhs
of (7) is the probability that no points of Φ fall in the region of the plane bounded by 0
and φ (ωs), a region whose area is given by the integral on the rhs of (7). Thus there is
no need to calculate the integral analytically. We have implicitly assumed that it was
possible to generate the infinite dimensional variate ω ∼ Zx

T . However to compute the
acceptance event Γ , we only need to know the value of Z on a finite set of random
times only, this set corresponding to the time coordinates of the realisations of Φ.
It is then possible to exchange the order in which Z and Φ are generated, obtaining
Algorithm 1.

Algorithm 1 Exact Algorithm 1 (EA1)
1. SAMPLE ZT ∼ hx,T
2. SAMPLE � = (X , �)

3. SAMPLE
{

Zχ j ; 1 ≤ j ≤ |X |
}

∼ Z
x
T | ZT

4. IF 
 RETURN S :=
{

Zχ j ; 1 ≤ j ≤ |X |
}

, ZT

ELSE GOTO 1
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As already observed, step 3 of Algorithm 1 results in the generation of independent
BBs. EA1 returns a skeleton S distributed according to the true law of the diffusion X .
Furthermore, from [3] it is known that the conditional law Zx

T | S can be expressed as
the product measure of independent BBs. Using this result it is possible to complete
S on any finite arbitrary number of times if required and even to generate (exactly)
certain functionals of the path of X .

The remaining part of this paper is organised as follows. In Sect. 2, the Quasi-EA
is motivated and introduced and the connection with EA is examined. In Sect. 3, the
two main theorems are proved. We start by establishing a local convergence result that
is further extended by means of the maximal coupling inequality. We show that the
Quasi-EA is an accurate continuous time approximation of the law of the diffusion
process. In fact, we prove the existence of a myopic (sequential) coupling between
the diffusion and the simulation scheme. The existence of such a coupling implies
the convergence with respect to the total variation distance, a strong form of weak
convergence according to [5]. Section 4 concludes the paper with some remarks about
possible future research on the topic and practical considerations about our scheme.

The Euler scheme does not generally converge with respect to the total variation
distance; see [9]. However, under mild technical conditions, the Euler scheme does
converge with respect to total variation distance if the diffusion process has a con-
stant diffusion term (see [6]). Genon-Catalot [4] extended this result to prove that the
rate of convergence is of order Δ1/2, where Δ is the length of the (equally spaced)
discretisation interval.

One of the main reasons for the interest in total variation distance is the well-
known connection it shares with coupling. Essentially the total variation distance
between two stochastic process laws is small if and only if there exists a probability
space in which the probability that the two processes are identical is close to unity.
However in the context of Markov processes, there is particular interest in jointly
Markov (or sequential or myopic) couplings, which explicitly utilise Markov structure.
A sequential coupling is a coupling in which, for each time increment in turn, we try
to maximise the probability that the two processes stay together. We therefore focus
on the existence of a sequential (or myopic) coupling between the diffusion and the
simulation scheme.

Although total variation convergence is equivalent to the existence of a coupling,
there is no guarantee that such a coupling is sequential. The existence of a sequential
coupling clearly implies total variation convergence, however the converse is false
in general. To illustrate this in the context of diffusion sample path approximation,
consider

dYt = αdt + dBt (8)

dXt = dBt , (9)

where α is a constant, Bt is a scalar BM on [0, T ], and both Xt and Yt start at the same
value. Let [0, T ] be partitioned in intervals of length Δ. Then elementary calculations
show that the total variation distance between YΔ and XΔ is of order O (

Δ1/2
)
, hence
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the probability of the coupling succeeds is
(
1 − Δ1/2

)1/Δ
and this last quantity tends

to 0 as Δ ↓ 0.
The major finding of this paper in Theorem 1 is to show that, unlike the Euler

scheme, the Quasi-EA algorithm can be shown to exibit a sequential coupling with
the true diffusion which is successful with probability converging to 1 as Δ → 0, on
the whole interval [0, T ] with rate Δ1/2.

2 The quasi-EA

The main idea behind the construction of Quasi-EA is very simple. In step 2 of Algo-
rithm 1, we sample a PPP with unit rate on [0, T ] × [0, m]. The acceptance rate in EA
increases as T ↓ 0, as the likelihood that no points from Φ are sampled increases too.
Clearly in this eventuality, the proposed path is accepted.

As the acceptance rate can be interpreted as a measure of the quality of the proposal
measure, we develop a scheme that always accept the proposal variate distributed as
Zx

T . Given the previous considerations, this approximation is accurate only if T is quite
small. Hence the time interval [0, T ] is partitioned into smaller intervals on which the
scheme is applied sequentially.

We now describe the scheme more precisely. The time interval [0, T ] is divided into
n smaller intervals having the same length Δ = T/n. The continuous time scheme Y
is defined by the following equations

Y0 = x (10)

YiΔ ∼ hYiΔ,Δ (i = 1, . . . , n) (11)

Ys ∼ BB
(
YiΔ, Y(i+1)Δ,Δ

)
(iΔ < s < (i + 1)Δ) (12)

where BB(x, dy, t) is the measure of a BB starting at (0, x) and ending at (t, dy).
It can be easily seen the process Y thus defined consists of n sequential BBMs. The
simulation of the Quasi-EA involves the sampling of the sequence of random variables
in (11) only. However we are going to prove a stronger result than the convergence of
the discretized process {YiΔ; i = 0, . . . , n} to the diffusion process. We shall prove
that the law of the continuous time process Y defined by Eqs. (10)–(12) converges
with respect to the total variation distance to the law of the diffusion process X as
n ↑ ∞. This result suggests that the BBs are good process to fill-in the gaps between
the simulated values of the discretized process.

We denote by Y
x,n
0,T the probability measure induced by the Quasi-EA scheme Y

started at x and consisting of n steps on [0, T ]. Consistently with the previous notation
Y

y
0,Δ denotes the probability measure induced by this scheme on the single step [0,Δ]

when Y0 = y. To sum up

{Ys; 0 ≤ s ≤ T | Y0 = x} ∼ Y
x,n
0,T (13)

{Ys; 0 ≤ s ≤ Δ | Y0 = y} ∼ Y
y
0,Δ = Z

y
Δ. (14)
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3 Two convergence results

The two convergence theorems require the two following lemmas.

Lemma 1 Let f : R → R be a continuous function, such that for all sufficiently
small Δ > 0

1√
2πΔ

∫

R

| f (y)| e− (y−x)2

2Δ dy < ∞ (15)

then (for any fixed x ∈ R)

lim
Δ↓0

1√
2πΔ

∫

R

f (y)e− (y−x)2

2Δ dy = f (x). (16)

This is proved by elementary dominated convergence arguments. We omit the proof.
For ease of exposition, we assume that the state space of X is R, although this is

easily generalised.
The following conditions, to be used selectively in the following results, are now

introduced

• (E1) ∃k ∈ (0, 1) , ∃c ∈ R+ : α (u) ≤ c + k
T u (u ≥ 0) and α (u) ≥ c +

k
T u (u < 0)

• (E2) ∃k ∈ (0, 1) , ∃c ∈ R+ : |α (u)| ≤ c + k
T |u| , u ∈ R

• (S1) α is twice continuously differentiable on R.

Lemma 2 If condition (E1) holds, then ∀r > 0

sup
0≤s≤T

EX∼hx,s [er |X |] < ∞. (17)

Proof From the definition of A, we get

A (u) ≤ r |u| + k

2T
u2 (u ∈ R)

and so

hx,s (u) ≤ exp

{

− (u − x)2

2s
+ r |u| + k

2T
u2

}

(u ∈ R, 0 ≤ s ≤ T ) .

If u ≥ 0

hx,s (u) ≤ exp

{

− (u − μ+)2

2σ 2+

}

r+,
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where μ+ =
(

x+2sr
1− sk

T

)

, σ+ = s(
1− sk

T

) , r+ = exp

{

− x2+x+2sr
1− sk

T

}

. Similarly if u < 0

hx,s (u) ≤ exp

{

− (u − μ−)2

2σ 2−

}

r−,

where μ− =
(

x−2sr
1− sk

T

)

, σ+ = σ−, r− = exp

{

− x2+x−2sr
1− sk

T

}

.

As k ∈ (0, 1) it follows that r+, r−, μ+, μ−, σ+, σ− are bounded for s ∈ (0, T ]
and the result follows. ��

For any two probability measures M, N on a measurable space (E, E), let ||M − N||
be their total variation metric, that is

||M − N|| := sup
A∈E

|M (A) − N (A)| . (18)

Finally we require the following proposition concerning total variation distance. Again
no proof will be provided for these elementary facts.

Proposition 1 (i) Suppose that P1 is a probability measure and B a P1-measurable
set. Define P2(A) = P1(A ∩ B)/P1(B). Then

‖P1 − P2‖ = P1(Bc) .

(ii) Let P3 be a probability measure with

dP3

dP1
≥ e−δ

for some non-negative constant δ. Then

‖P1 − P3‖ ≤ 1 − e−δ ≤ δ .

We are now ready to state the following localised result:

Theorem 1 If condition (S1) holds and one of conditions (E1) and (E2) holds, then
for any fixed x the law of the BBM Zx

Δ converges towards the law of the diffusion
process Qx

Δ with respect to the total variation metric as Δ ↓ 0:

lim
Δ↓0

∣
∣
∣
∣Zx

Δ − Qx
Δ

∣
∣
∣
∣ = 0 . (19)

Moreover, for all Δ sufficiently small, ε > 0

∣
∣
∣
∣Zx

Δ − Qx
Δ

∣
∣
∣
∣ ≤ kxΔ

3/2−ε, (20)

where the leading order constant kx is a continuous function of x (i.e., the rate of
convergence is at least Ox

(
Δ3/2−ε

)
for any ε > 0).
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Proof To ease the notation let W = Wx
Δ and Q = Qx

Δ in the scope of this proof, and
in fact generally suppress any unneccessary dependence on the initial state x . We set
B to be the event

B =
{

sup
0≤s≤Δ

|ωs − ω0| ≤ Δ1/2−ε

}

.

We introduce a new probability measure QB via the following Radon–Nikodym deriv-
ative

dQB

dQ
= 1B/qx,Δ

qx,Δ = Q [B] .

Similarly define ZB to be Z conditioned on the event B. The triangle inequality gives

‖Z − Q‖ ≤
∥
∥
∥Z

B − QB
∥
∥
∥+

∥
∥
∥Q

B − Q

∥
∥
∥+

∥
∥
∥Z

B − Z

∥
∥
∥

= T1 + T2 + T3,

and we shall deal separately with the three terms.
First note that from (S1), there exists a constant k1 such that

∣
∣
∣
∣
α2 + α′

2
(z) − α2 + α′

2
(x)

∣
∣
∣
∣ ≤ k1|x − z| ≤ k1Δ

1/2−ε

at least for z such that |z − x | ≤ Δ1/2−ε . For T1 note that if dQ
B (ω)

dWB = f (ω) then

inf
ω

f (ω) ≥ eδ sup
ω

f (ω),

where δ = 2k1Δ
3/2−ε . Therefore by Proposition 1(ii),

T1 ≤ k1Δ
3/2−ε .

By Proposition 1(i), the proof will thus be complete if we can demonstrate that Q(BC )

and Z(BC ) can be similarly bounded. From the definition of Z and an application of
the Cauchy–Schwarz inequality, we get

Z(BC ) = EW[1{BC }eA(wΔ)]
EW[eA(wΔ)] ≤ W(BC )

1
2 EW[e2A(wΔ)] 1

2

EW[eA(wΔ)] .

Now recall that by assumption (E1) (or (E2)), A is bounded by a quadratic function so
that for all sufficiently small Δ, EW[e2A(wΔ)] is finite and bounded. Thus by Lemma
1 ∃k2 > 0 s.t.
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Z(BC ) ≤ k2W(BC )
1
2 .

Similar considerations can be applied to Q(BC ) yielding:

Q(BC ) ≤
W(BC )

1
2 EW

[
e2A(wΔ)−2

∫Δ
0 φ(ωs )ds

] 1
2

EW

[
eA(wΔ)−∫Δ

0 φ(ωs )ds
]

and as φ is a positive function by Lemma 1 ∃k3 > 0 s.t.

Q(BC ) ≤ k3W(BC )
1
2 .

On the other hand, we can use the standard fluctuation result for BM:

W(BC ) ≤ 2W( sup
0≤s≤Δ

ws ≥ x + Δ1/2−ε)

= 4W(wΔ ≥ x + Δ1/2−ε) = O(exp{−Δ−2ε/2}).
thus completing the proof. ��

The extension of this localised result to the global case relies on the maximal
coupling inequality. The coupling method (see [11]) is already prevalent in the field
of SDEs, mainly in the multi-dimensional case. Our approach is very similar to that
of [7]. Given the relevance of the coupling method, it is sensible to briefly introduce
its basic elements. We recall:

Definition 1 Let (E, E) be a Polish measurable space, and M, N be two proba-
bility measures on (E, E). We state that a probability measure P̂ on

(
E2, E2

)
is

a coupling of (M, N) if its marginals are M and N. We also say that a random
object

(
�′,F ′, P′,

(
X ′, Y ′)), where

(
�′,F ′, P′) is a probability space and

(
X ′, Y ′)

is a F ′/E2-measurable function, is a coupling of (M, N) if the image measure
P′ (X ′, Y ′)−1 is a coupling of (M, N).

The power of the coupling argument comes from the following Lemma

Lemma 3 Let ||M − N|| be the total variation metric, that is

||M − N|| := sup
A∈E

|M (A) − N (A)| (21)

(Coupling Inequality) For any coupling
(
�′,F ′, P′,

(
X ′, Y ′)) of (M, N)

||M − N|| ≤ P′ [X ′ �= Y ′] (22)

(Maximal Coupling Equality) There is a coupling
(
�̂, F̂ , P̂,

(
X̂ , Ŷ

))
of (M, N) s.t.

||M − N|| = P̂

[
X̂ �= Ŷ

]
(23)

This coupling is called the maximal coupling of (M, N).
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Theorem 2 (Main Convergence Theorem) If in addition to condition (S1) conditions
(E2) and (S2) also hold, where

• (S2) α′ is sub-quadratic, that is

∣
∣α′ (u)

∣
∣ ≤ c

(
1 + u2

)
(u ∈ R) (24)

or condition (E1) and (S3) also hold, where

• (S3) α and α′ are sub-exponential, that is that:

|α (u)| , ∣∣α′ (u)
∣
∣ ≤ c

(
1 + ec|u|) (u ∈ R) (25)

then there exist a (myopic) coupling
(
P̂, X̂ , Ŷ

)
of
(
Qx

0,T , Y
x,n
0,T

)
such that

lim
n→∞ P̂

[
X̂ �= Ŷ

]
= 0 (26)

and the rate of convergence is at least O (
Δ1/2−ε

)
for any ε > 0. As a consequence

of the coupling inequality, Y
x,n
0,T converges towards Qx

0,T with respect to the total
variation metric with the same rate of convergence.

Remark 1 If (E2) holds then condition (S2) is a weak assumption. As α2 + α′ is
bounded below, this additional condition means that the drift coefficient cannot oscil-
late too quickly as |u| → ∞. Moreover in most diffusion models condition (E1) is
satisfied, as otherwise the diffusion would exhibit explosive behaviour.

Proof We build a probability space
(
�̂, F̂ , P̂

)
and two measurable functions

(
�̂, F̂ , P̂

)
→ X̃ (s, x, y) s ∈ (0,Δ]
→ Ỹ (s, x, y) s ∈ (0,Δ]

that define the maximal coupling of
(
Qx

0,Δ, Y
y
0,Δ

)
. A coupling of

(
Qx

0,T , Y
x,n
0,T

)
that

starts from this maximal coupling is constructed on the single time interval (0,Δ]. The
initial step is defined by setting X̂0 = Ŷ0 = x and X̂s = X̃ (s, x, x) , Ŷs = Ỹ (s, x, x)

for s ∈ (0,Δ]. Now suppose that
(

X̂ , Ŷ
)

is a coupling of
(
Qx

0,iΔ, Y
x,n
0,iΔ

)
. Let

X̂iΔ+s := X̃
(

s, X̂iΔ, ŶiΔ

)
s ∈ (0,Δ]

ŶiΔ+s := Ỹ
(

s, X̂iΔ, ŶiΔ

)
s ∈ (0,Δ]

independent of
(
X̂ , Ŷ

)
on [0, iΔ]. From the time homogeneity and Markov property of

the processes X, Y (limited to the set of times {iΔ; i = 1, . . . , n − 1}) it follows that(
X̂ , Ŷ

)

s∈(iΔ,(i+1)Δ] is a coupling of
(
Q

X̂iΔ
iΔ,(i+1)Δ, Y

ŶiΔ
iΔ,(i+1)Δ

)
and that the extended

123



Queueing Syst (2013) 73:447–460 457

process
(

X̂ , Ŷ
)

s∈[0,(i+1)Δ]
is a coupling of

(
Qx

0,(i+1)Δ, Y
x,n
0,(i+1)Δ

)
. The induction

step is thus satisfied. No measurability problem arise in the definition of X̃ , Ỹ and
they can be chosen to be jointly measurable in (x, y), see [7] for the technical details.
The coupling inequality yields

∣
∣
∣

∣
∣
∣Y

x0,n
0,T − Q

x0
0,T

∣
∣
∣

∣
∣
∣

≤ P̂

[
∃s ∈ [0, T ] : X̂s �= Ŷs

]

≤ P̂

[
X̂s �= Ŷs on [0,Δ]

]

n−2∑

i=0

P̂

[
X̂ �= Ŷ on ((i + 1) Δ, iΔ] | X̂iΔ = ŶiΔ

]

from the structure of the coupling
(

X̂ , Ŷ
)

, and the generic term of this last quantity

is exactly the maximal coupling of
(
Q

X̂iΔ
iΔ,(i+1)Δ, Y

ŶiΔ
iΔ,(i+1)Δ

)
. Hence, it is possible to

use the maximal coupling equality. By defining a family of sub-probability measures

on R by Si (A) := P̂

[
X̂iΔ = ŶiΔ ∈ A

]
and by using this last consideration

∣
∣
∣

∣
∣
∣Y

x0,n
0,T − Q

x0
0,T

∣
∣
∣

∣
∣
∣

≤
∣
∣
∣

∣
∣
∣Y

x0
0,Δ − Q

x0
0,Δ

∣
∣
∣

∣
∣
∣+

n−2∑

i=0

∫
∣
∣
∣
∣Ys

0,Δ − Qs
0,Δ

∣
∣
∣
∣ dSi (s)

≤ kx0Δ
3/2−ε + Δ3/2−ε

n−2∑

i=0

∫

ksdSi (s)

Similarly to the proof of Theorem 1

kx := sup
|y|≤|x |+1

∣
∣
∣α

2+α′
2 (y) − α2+α′

2 (x)

∣
∣
∣

|y − x | .

We see that the behaviour in the tails as |x | → ∞ is determined by

lim|x |→∞k̃x := lim|x |→∞

∣
∣
∣α

2+α′
2 (x)

∣
∣
∣

|x |

If condition (S2) holds the positive function k̃x can diverge at most linearly. So kx ≤
k (1 + |x |) and
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∫

ksdSi (s) ≤ k + k
∫

|s| dSi (s) ≤ k + k
∫

|s| dQ
x0
iΔ (s) ,

where the last integral is the absolute momentum of XiΔ : E [|XiΔ| | X0 = x0]. It is
a known result that (E2) implies

E [|XiΔ| | X0 = x0] ≤ E

[

sup
0≤s≤T

|Xs |2 | X0 = x0

]

< ∞

∀i ∈ N. Therefore
∣
∣
∣

∣
∣
∣Y

x0,n
0,T − Q

x0
0,T

∣
∣
∣

∣
∣
∣

≤ kx0Δ
3/2−ε + Δ3/2−ε

n−2∑

i=0

k

(

1 + E

[

sup
0≤s≤T

|Xs |2 | X0 = x0

])

≤ dΔ3/2−εn = d

T
Δ1/2−ε

for Δ sufficiently small.
If instead condition (S3) holds, by looking at lim|x |→∞k̃x , we obtain the sub-

exponential growth condition on kx , that is

kx ≤ k
(

1 + ek|x |) (x ∈ R) .

As a consequence

∫

ksdSi (s) ≤ k + k
∫

ek|s|dSi (s) ≤ k + k
∫

ek|s|dZ
x0
iΔ(s).

Again, the last integral is E
[
ek|YiΔ| | Y0 = x0

]
. As condition (E1) holds, Lemma 2

implies that

sup
i=1,...,n−1

E

[
ek|YiΔ| | Y0 = x0

]
< ∞.

Finally

∣
∣
∣

∣
∣
∣Y

x0,n
0,T − Q

x0
0,T

∣
∣
∣

∣
∣
∣

≤ kx0Δ
3/2−ε + Δ3/2−ε

n−2∑

i=0

k

(

1 + sup
i=1,...,n−1

E

[
ek|YiΔ| | Y0 = x0

]
)

≤ dΔ3/2−εn = d

T
Δ1/2−ε.

��
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4 Conclusion

In this paper, we proved two convergence results about the Quasi-EA simulation
scheme.

We shown the convergence of the law of the BBM Z to the law of the diffusion
process X when both are started at the same value and the time interval [0,Δ] shrinks
to zero. The convergence is obtained with respect to the total variation distance and an
upper bound for the rate of the convergence is shown to be Ox

(
Δ3/2−ε

) ∀ε > 0. The
notation underlines that this speed of convergence is not necessarily uniform in x .

We also extend this convergence to the global case of a fixed time interval [0, T ]. In
this case, [0, T ] is uniformly partitioned in n intervals and the convergence is obtained
as n ↑ ∞. The main difficulty that the starting point for X and Y on each single
interval is not the same anymore is overcome using the coupling method. We are thus
able to construct a successful myopic coupling of the Quasi-EA and the diffusion.
Consequently, we obtain the convergence with respect to the total variation distance
and an upper bound for the rate of convergence O (

Δ1/2−ε
) ∀ε > 0.

Very efficient algorithms to sample from the parametric family of densities{
hx,T

}

x∈X
are introduced in [8]. However, while the quasi-EA is more efficient than

the Euler scheme, a brief simulation study suggests that Predictor–Corrector schemes
result in a more accurate simulation method.

As already noted, the hypothesis used in the derivation of these results include
the conditions that permit the simulation of X using EA3. It is possible to weaken
the condition used in our work and prove the convergence of the Quasi-EA even
in models where EA3 can not be applied, and this will be the focus of future
research. This could be worked out in future research. The main contribute in
this paper is to obtain an insight into the role of the BBM Z in the context
of EA.
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