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Abstract

In several implementations of Sequential Monte Carlo (SMC) methods it is natural,

and important in terms of algorithmic efficiency, to exploit the information of the

history of the samples to optimally tune their subsequent propagations. In this article

we provide a carefully formulated asymptotic theory for a class of such adaptive SMC

methods. The theoretical framework developed here will cover, under assumptions,

several commonly used SMC algorithms [5, 17, 20]. There are only limited results

about the theoretical underpinning of such adaptive methods: we will bridge this gap

by providing a weak law of large numbers (WLLN) and a central limit theorem (CLT)

for some of these algorithms. The latter seems to be the first result of its kind in

the literature and provides a formal justification of algorithms used in many real data

contexts [17, 20]. We establish that for a general class of adaptive SMC algorithms [5]

the asymptotic variance of the estimators from the adaptive SMC method is identical

to a so-called ‘perfect’ SMC algorithm which uses ideal proposal kernels. Our results

are supported by application on a complex high-dimensional posterior distribution

associated with the Navier-Stokes model, where adapting high-dimensional parameters

of the proposal kernels is critical for the efficiency of the algorithm.

Keywords: Adaptive SMC, Central Limit Theorem, Markov chain Monte Carlo.

1 Introduction

SMC methods are amongst the most widely used computational techniques in statistics,

engineering, physics, finance and many other disciplines; see [14] for a recent overview. They

are designed to approximate a sequence {ηn}n≥0 of probability distributions of increasing

dimension or complexity. The method uses N ≥ 1 weighted samples, or particles, generated

in parallel and propagated via Markov kernels and resampling methods. The method has
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accuracy which increases as the number of particles grows and is typically asymptotically

exact. Standard SMC methodology is by now very well understood with regards to its

convergence properties and several consistency results have been proved [6, 9]. SMC methods

have also recently been proved to be stable in certain high-dimensional contexts [2].

In this article, we are concerned with adaptive SMC methods; in an effort to improve

algorithmic efficiency, the weights and/or Markov proposal kernels can depend upon the

history of the simulated process. Such procedures appear in a wealth of articles including

[5, 12, 17, 20] and have important applications in, for example, econometrics, population

genetics and data assimilation. The underlying idea of these algorithms is that, using the

particle approximation ηNn of the distribution ηn, one can exploit the induced information

to build effective proposals or even to determine the next probability distribution in the

sequence; this is often achieved by using the expectation ηNn (ξn+1) of a summary statistic

ξn+1 with respect to the current SMC approximation ηNn . In other cases, one can use the

particles to determine the next distribution in an artificial sequence of densities; we expand

upon this point below. Such approaches are expected to lead to algorithms that are more

efficient than their ‘non-adaptive’ counter-parts. Critically, such ideas also deliver more

automated algorithms by reducing the number of user-specified tuning parameters.

Whilst the literature on adaptive MCMC methods is by now well-developed e.g. [1] and

sufficient conditions for an adaptive MCMC algorithm to be ergodic are well-understood, the

analysis of adaptive SMC algorithms is still in its infancy. To the best of our knowledge, a

theoretical study of the consistency and fluctuation properties of adaptive SMC algorithms

is lacking in the current literature. This article aims at filling this critical gap in the

theory of SMC methods. Some preliminary results can be found, under exceptionally strong

conditions, in [8, 17]. Proof sketches are given in [12] with some more realistic but limited

analysis in [16]. We are not aware of any other asymptotic analysis of these particular class

of algorithms in the literature. Contrary to adaptive MCMC algorithms, we show in this

article that it is reasonable to expect most adaptive SMC methods to be asymptotically

correct.

1.1 Results and Structure

This article explores two distinct directions. In the first part, an asymptotic analysis of a

class of SMC methods with adaptive Markov kernels and weights is carried out. The second

part of the article looks at the case where an additional layer of randomness is taken into
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account through an adaptive tempering procedure. A weak law of large numbers (WLLN)

and a central limit theorem (CLT) relevant to each situation are proved. In both cases we

consider a sequence of target distributions {ηn}n≥0 defined on a corresponding sequence of

measurable spaces (En,En)n≥0. We write ηNn = (1/N)
∑N
i=1 δxin for the N -particle SMC

approximation of ηn, with δxn the Dirac measure at xn ∈ En and {xin}Ni=1 ∈ ENn the

collection of particles at time n ≥ 0.

In the first part of the paper, for each n ≥ 1 we consider parametric families, indexed

by a parameter ξ ∈ Rd, of Markov kernels Mn,ξ : En−1 × En → R+ and potential functions

Gn−1,ξ : En−1 → R+. To construct the particle approximation ηNn , the practical SMC

algorithm exploits summary statistics ξn : En−1 → Rd by reweighing and propagating

the particle approximation ηNn−1 through the potential Gn,ηNn−1(ξn) and the Markov kernel

Mn,ηNn−1(ξn). This is a substitute for the perfect algorithm (as also used by [16] and which

cannot be implemented) which employs the Markov kernel Mn,ηn−1(ξn) and weight function

Gn,ηn−1(ξn). We prove a WLLN and a CLT for both the approximation of the probability

distribution ηn and its normalising constant. This set-up is relevant, for example, in the

context of sequential Bayesian parameter inference [5, 18] when {ηn}n≥0 is a sequence of

posterior distributions that corresponds to increasing amount of data. The Markov kernel

Mn,ηNn−1(ξn) is user-specified and its role is to efficiently move the particles within the state

space. In many situations the Markov kernel Mn,ηNn−1(ξn) is constructed so that it leaves

the distribution ηn invariant; a random walk Metropolis kernel that uses the estimated

covariance structure of ηNn−1 for scaling its jump proposals is a popular choice. The case

when there is also a tuned parameter in the weight function Gn,ηNn−1(ξn) is relevant to particle

filters [14], as described in Section 3.2.

The second part of this article investigates an adaptive tempering procedure. Standard

MCMC methods can be inefficient for directly exploring complex probability distributions

involving high-dimensional state spaces, multi-modality, greatly varying scales, or combi-

nation thereof. It is a standard approach to introduce a bridging sequence of distributions

{ηn}n=n∗
n=0 between a distribution η0 that is easy to sample from and the distribution of

interest ηn∗ ≡ π. In accordance with the simulated annealing literature, the probability

distribution of interest is written as π(dx) = Z−1 e−β∗ V (x)m(dx) for a potential V , tem-

perature parameter β∗ ∈ R, dominating measure m(dx) and normalisation constant Z; the

bridging sequence of distributions is constructed by introducing a ladder of temperature

parameters β0 ≤ β1 ≤ · · · ≤ βn∗ =: β∗ and setting ηn(dx) = Z(βn)−1 e−βn V (x)m(dx) for
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a normalisation constant Z(βn). The choice of the bridging sequence of distributions is an

important and complex problem, see e.g. [15]. To avoid the task of having to pre-specify

a potentially large number of temperature parameters, an adaptive SMC method can com-

pute them ‘on the fly’ [17, 20], thus obtaining a random increasing sequence of temperature

parameters
{
βNn
}
n≥0

. In this article, we adopt the following strategy: assuming a particle

approximation ηNn−1 = (1/N)
∑N
i=1 δxin−1

with temperature parameter βNn−1, the particles

are assigned weights proportional to e−(βNn −β
N
n−1)V (xin−1) to represent the next distribution

in the sequence; the choice of βNn is determined from the particle collection {xin−1}Ni=1 by

ensuring a minimum effective sample size (ESS) (it is described later on, why this might be a

sensible choice). This can efficiently be implemented using a bisection method; see e.g. [17].

We prove a WLLN and a CLT for both the approximation of the probability distribution

ηn and the estimates of the normalising constants Z(βn).

One of the contributions of the article is the proof that the asymptotic variance in

the CLT, for some algorithms in the first part of the paper, is identical to the one of the

‘perfect’ SMC algorithm using the ideal kernels. One consequence of this effect is that if

the asymptotic variance associated to the (relative) normalizing constant estimate increases

linearly with respect to time (see e.g. [4]), then so does the asymptotic variance for the

adaptive algorithm. We present numerical results on a complex high-dimensional posterior

distribution associated with the Navier-Stokes model (as in e.g. [18]), where adapting the

proposal kernels over hundreds of different directions is critical for the efficiency of the

algorithm. Whilst our theoretical result (with regards to the asymptotic variance) only holds

for the case where one adapts the proposal kernel, the numerical application will involve

much more advanced adaptation procedures. These experiments provide some evidence that

our theory could be relevant in more general scenarios.

This article is structured as follows. In Section 2 the adaptive SMC algorithm is intro-

duced and the associated notations are detailed. In Section 3 we provide some motivating

examples for the use of adaptive SMC. In Section 4 we study the asymptotic properties of a

class of SMC algorithms with adaptive Markov kernels and weights. In Section 5, we extend

our analysis to the case where an adaptive tempering scheme is taken into account. In each

situation, we prove a WLLN and a CLT. In Section 6, we verify that our assumptions hold

when using the adaptive SMC algorithm in a real scenario. In addition, we provide numer-

ical results associated to the Navier-Stokes model and some theoretical insights associated

to the effect of the dimension of the statistic which is adapted. The article is concluded
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in Section 7 with a discussion of future work. The appendix features a proof of one of the

results in the main text.

2 Algorithm and Notations

In this section we provide the necessary notations and describe the SMC algorithm with

adaptive Markov kernels and weights. The description of the adaptive tempering procedure

is postponed to Section 5.

2.1 Notations and definitions

Let (En,En)n≥0 be a sequence of measurable spaces endowed with a countably generated σ-

field En. The set Bb(En) denotes the class of bounded En/B(R)-measurable functions on En

where B(R) Borel σ-algebra on R. The supremum norm is written as ‖f‖∞ = supx∈En |f(x)|

and P(En) is the set of probability measures on (En,En). We will consider non-negative

operators K : En−1 × En → R+ such that for each x ∈ En−1 the mapping A 7→ K(x,A)

is a finite non-negative measure on En and for each A ∈ En the function x 7→ K(x,A) is

En−1/B(R)-measurable; the kernel K is Markovian if K(x, dy) is a probability measure for

every x ∈ En−1. For a finite measure µ on (En−1,En−1) and Borel test function f ∈ Bb(En)

we define

µK : A 7→
∫
K(x,A)µ(dx) ; Kf : x 7→

∫
f(y)K(x, dy) .

We will use the following notion of continuity at several places in this article.

Definition 2.1. Let X , Y and Z be three metric spaces. A function f : X × Y → Z is

continuous at y0 ∈ Y uniformly on X if

lim sup
δ→0+

{
dZ
(
f(x, y), f(x, y0)

)
: x ∈ X , dY(y, y0) < δ

}
= 0 . (1)

We write →P and ⇒ to denote convergence in probability and in distributions. The

Kroenecker product u ⊗ v of two vectors u, v ∈ Rd designates the matrix u · v> ∈ Rd×d;

the covariance of a function ϕ ∈ Bb(E)r with respect to a probability measure µ ∈ P(E) is

denoted by Σµ(ϕ) =
∫
E

[ϕ(x)− µ(ϕ)]⊗ [ϕ(x)− µ(ϕ)]µ(dx).

2.2 SMC Algorithm

For each index n ≥ 1, we consider Markov operators Mn,ξ : En−1 × En → R+ and weight

functions Gn−1,ξ : En−1 → R+ parametrized by ξ ∈ Rd. The adaptive SMC algorithm
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to be described exploits summary statistics ξn : En−1 → Rd and aims at approximating

the sequence of probability distributions {ηn}n≥0, on the measurable spaces (En,En)n≥0,

defined via their operation on a test function ϕn ∈ Bb(En) as

ηn(ϕ) := γn(ϕn)/γn(1) (2)

where γn is the unnormalised measure on (En,En) given by

γn(ϕ) := E
[ n−1∏
p=0

Gp(Xp) · ϕ(Xn)
]
. (3)

The above expectation is under the law of a non-homogeneous Markov chain
{
Xn

}
n≥0

with

initial distribution X0 ∼ η0 ≡ γ0 and transition P [Xn ∈ A | Xn−1 = x ] = Mn(x,A) where

we have used the notations

Mn ≡Mn,ηn−1(ξn) ; Gn ≡ Gn,ηn(ξn+1) .

In practice, the expectations ηn−1(ξn) of the summary statistics are not analytically tractable

and it is thus impossible to simulate from the Markov chain {Xn}n≥0 or compute the weights

Gn. Nevertheless, for the purpose of analysis, we introduce the following idealized algorithm,

referred to as the perfect SMC algorithm in the sequel, that propagates a set of N ≥ 1 par-

ticles by sampling from the distribution

P
(
d(x1:N

0 , x1:N
1 , . . . , x1:N

n )
)

=

N∏
i=1

η0(dxi0)

n∏
p=1

N∏
i=1

Φp(η
N
p−1)(dxip) (4)

where the N -particle approximation of the distribution (2) is defined as

ηNn =
1

N

N∑
i=1

δxin . (5)

In (4), the operator Φn : P(En−1)→ P(En) is

Φn(µ)(dy) =
µ(Gn−1Mn)(dy)

µ(Gn−1)
.

Expression (4) is a mathematically concise way to describe a standard particle method that

begins by sampling N i.i.d. particles from η0 and, given particles {xin−1}Ni=1, performs multi-

nomial resampling according to the unnormalised weights Gn−1(xin−1) before propagating

the particles via the Markov kernel Mn(x, dy).

The SMC algorithm that is actually simulated in practice, referred to as the practical

SMC algorithm in the sequel, has joint law

P
(
d(x1:N

0 , x1:N
1 , . . . , x1:N

n )
)

=

N∏
i=1

η0(dxi0)

n∏
p=1

N∏
i=1

Φp,N (ηNp−1)(dxip) . (6)
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The operator Φn,N approximates the ideal one, Φn, and is defined as

Φn,N (µ)(dy) =
µ(Gn−1,N Mn,N )(dy)

µ(Gn−1,N )
.

We have used the short-hand notations

Mn,N ≡Mn,ηNn−1(ξn) ; Gn,N ≡ Gn,ηNn (ξn+1) .

Throughout this article we assume that the potentials are strictly positive, Gn,ξ(x) > 0

for all x ∈ En and ξ ∈ Rd so that there is no possibility that the algorithm collapses. The

particle approximation of the unnormalised distribution (3) is defined as

γNn (ϕn) =
{ n−1∏
p=0

ηNp (Gp,N )
}
ηNn (ϕn) . (7)

It will bel useful to introduce the non-negative operator

Qn,N (x, dy) = Gn−1,N (x)Mn,N (x, dy) (8)

and the idealised version

Qn(x, dy) = Gn−1(x)Mn(x, dy) ≡ Gn−1,ηn−1(ξn)(x)Mn,ηn−1(ξn)(x, dy) .

Many times we will be interested in the properties of involved operators as functions of ξ,

thus we will also write

Qn,ξ(x, dy) := Gn−1,ξ(x)Mn,ξ(x, dy)

to emphasise the dependency on the parameter ξ ∈ Rd. Unless otherwise stated, the differ-

entiation operation ∂ξ at step n is evaluated at the limiting parameter value ξ = ηn−1(ξn).

With these definitions, one can verify that the following identities hold

ηn(ϕn) = Φn(ηn−1)(ϕn) =
ηn−1(Qnϕn)

ηn−1(Gn−1)
; γn(ϕn) = γn−1(Qnϕn) . (9)

Similar formulae are available for the N -particle approximations; if FN
n designates the

filtration generated by the particle system up-to (and including) time n we have

E
[
ηNn (ϕn) | FN

n−1

]
= Φn,N (ηNn−1)(ϕn) ; E

[
γNn (ϕn) | FN

n−1

]
= γNn−1(Qn,Nϕn) . (10)

In the sequel, we will use the expressions En−1[ · ] and Varn−1[ · ] to denote the conditional

expectation E [ · | FN
n−1 ] and conditional variance Var [ · | FN

n−1 ] respectively.

Remark 2.1. Our results concern multinomial resampling at each time. Extension of our

analysis to adaptive resampling [11] is possible but would require many additional calculations

and technicalities; this is left as a topic for future work.
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3 Motivating Examples

3.1 Sequential Bayesian Parameter Inference

Consider Bayesian inference for the parameter x ∈ E, observations yi ∈ Y and prior measure

η0(dx). The posterior distribution ηn after having observed y1:n ∈ Yn+1 reads

ηn(dx) =
(
P [ y1:n | x ] /P [ y1:n ]

)
η0(dx) .

The approach in [5] fits in the framework described in Section 2.2 with state spaces En = E

and potential functions Gn(x) = P [ yn+1 | y1:n, x ]. For an MCMC kernel Mn ≡Mn,ηn−1(ξn)

with invariant measure ηn the posterior distribution ηn is given by ηn(ϕn) = γn(ϕn)/γn(1)

where the unnormalised measure γn is defined as in (3). A popular choice consists in choosing

for Mn,ηn−1(ξn) a random walk Metropolis kernel reversible with respect to ηn and jump

covariance structure matching the one of the distribution ηn−1. Under our assumptions, the

analysis of Section 4 applies in this context.

Whilst such an example is quite simple it is indicative of more complex applications in the

literature. Article [18] considers a state-space with dimension of about 104 and dimension of

adapted statistic of about 500. In such a setting, pre-specifying the covariance structure of

the random walk Metropolis proposals is impractical; the adaptive SMC strategy of Section 2

provides a principled framework for automatically setting this covariance structure, see also

Section 6.2.

3.2 Filtering

This section illustrates the case of having an adaptive weight function. Consider a state-

space model with observations Y1:n ∈ Yn, unobserved Markov chain U0:n ∈ Un+1 and joint

density with respect to a dominating measure λ⊗nY ⊗ λ
⊗n+1
U given by

η0(u0)

n∏
p=1

gp(up, yp) fp(up−1, up) .

The probability η0(u0)λU (du0) is the prior distribution for the initial state of the unobserved

Markov chain, gp(up, yp)λY(dyp) is the conditional observation probability at time p and

fp(up−1, up)λU (dup) describes the dynamics of the unobserved Markov process.

A standard particle filter with proposal at time p corresponding to the Markov kernel

P[Up ∈ dup | Up−1 = up−1] = mp(up−1, up)λU (dup) has importance weights of the form

Gp(xp) =
gp(up, yp)fp(up−1, up)

mp(up−1, up)

8



where here xp ≡ (x
(1)
p , x

(2)
p ) ≡ (up−1, up). The process {Xp}np=1 is Markovian with transition

Mp(xp−1, dxp) = δ
x
(2)
p−1

(dx
(1)
p )mp(x

(2)
p−1, x

(2)
p )λU (dx

(2)
p ). The marginals of the sequence of

probability distributions ηn described in Equation (2) are the standard predictors.

In practice, the choice of the proposal kernel mn is critical to the efficiency of the SMC

algorithm. In such settings, one may want to exploit the information contained in the

distribution ηn−1 in order to build efficient proposal kernels. Approximating the filter mean

is a standard strategy. In these cases, both the Markov kernel Mn and the weight function

Gn−1 depend upon the distribution ηn−1; this is covered by the framework adapted in

Section 2. See [14] and the references therein for ideas associated to such approaches.

4 Asymptotic Results for Adaptive SMC via Summary

Statistics

In this section we develop an asymptotic analysis of the class of adaptive SMC algorithm

described in section 2. After first stating our assumptions in Section 4.1, we give a WLLN

in Section 4.2 and a CLT in Section 4.3.

4.1 Assumptions

Our results will make use of conditions (A1-2) below. By Dom(ξn) ⊂ Rd we denote a convex

set that contains the range of the statistic ξn : En−1 → Rd.

(A1) For each n ≥ 0, function (x, ξ) 7→ Gn,ξ(x) is bounded and continuous at ξ = ηn(ξn+1)

uniformly over x ∈ En. Statistics ξn+1 : En → Rd are bounded. For any test function

ϕn+1 ∈ Bb(En+1) the function (x, ξ) 7→ Qn+1,ξϕn+1(x) is bounded, continuous at

ξ = ηn(ξn+1) uniformly over x ∈ En.

(A2) For each n ≥ 0 and test function ϕn+1 ∈ Bb(En+1), function (x, ξ) 7→ ∂ξQn+1,ξϕn+1(x)

is well defined on En×Dom(ξn+1), bounded and continuous at ξ = ηn(ξn+1) uniformly

over x ∈ En.

Assumptions (A1-2) are reasonably weak in comparison to some assumptions used in the

SMC literature, such as in [9], but are certainly not the weakest adopted for WLLN and

CLTs (see e.g. [6]). The continuity assumptions in (A2) are associated to the use of a first

order-Taylor expansion. We have defined Dom(ξp) as a convex set because we need to com-

pute integrals along segments between points of Dom(ξp). In general, we expect that the
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assumptions can be relaxed for unbounded functions at the cost of increased length and

complexity of the proofs.

4.2 Weak Law of Large Numbers

In this section we establish a weak law of large numbers (WLLN). To do so, we state first

a slightly stronger result that will be repeatedly used in the fluctuation analysis presented

in Section 4.3.

Theorem 4.1. Assume (A1). Let V be a Polish space and {VN}N≥0 a sequence of V-

valued random variables that converges in probability to v ∈ V. Let n ≥ 0, r ≥ 1 and

ϕn : En × V → Rr be a bounded function continuous at v ∈ V uniformly on En. The

following limit holds in probability

lim
N→∞

ηNn [ϕn(·, VN ) ] = ηn [ϕn(·, v) ] .

Corollary 4.1 (WLLN). Assume (A1). Let n ≥ 0, r ≥ 1 and ϕn : En → Rr a bounded

measurable function. The following limit holds in probability, limN→∞ ηNn (ϕn) = ηn(ϕn).

Proof of Theorem 4.1. It suffices to concentrate on the scalar case r = 1. The proof is by

induction on n. The initial case n = 0 is a direct consequence of WLLN for i.i.d. random

variables and Definition 2.1. For notational convenience, in the rest of the proof we write

ϕ̄n(·) instead of ϕn(·, v). We assume the result at rank n− 1 and proceed to the induction

step. Since VN converges in probability to v ∈ V, Definition 2.1 shows that it suffices to

prove that [ηNn − ηn]
(
ϕ̄n
)

converges in probability to zero. We use the decomposition

[ηNn − ηn](ϕ̄n) =
(
ηNn (ϕ̄n)− En−1[ηNn (ϕ̄n)]

)
+
(
En−1[ηNn (ϕ̄n)]− ηn(ϕ̄n)

)
= [ηNn − Φn,N (ηNn−1)](ϕ̄n) + [Φn,N (ηNn−1)− ηn](ϕ̄n) =: A(N) +B(N) .

To conclude the proof, we now prove that each of these terms converges to zero in probability.

• Since the expected value of A(N) is zero, it suffices to prove that its moment of order

two also converges to zero as N goes to infinity. To this end, it suffices to notice that

En−1

[
A(N)2

]
= 1

N En−1

[(
ϕ̄(xin)− En−1[ϕ̄(xin)]

)2] ≤ ‖ϕ̄‖2∞
N

.

• To treat the quantity B(N), we use the definition of Φn,N (ηNn−1) in (9) and decompose
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it as the sum of three terms B(N) = B1(N) +B2(N) +B3(N) with

B1(N) = ηNn−1

{
[Qn,N −Qn](ϕ̄n)

}
/ ηNn−1(Gn−1,N ) ;

B2(N) = [ηNn−1 − ηn−1]
(
Qn(ϕ̄n)

)
/ ηNn−1(Gn−1,N ) ;

B3(N) = ηNn−1[Qn(ϕ̄n)]×
{

1/ηNn−1(Gn−1,N )− 1/ηn−1(Gn−1)
}
.

We prove that Bi(N) converges in probability to zero for i = 1, 2, 3. The induction hy-

pothesis shows that ηNn−1(ξn) converges to ηn−1(ξn) in probability. By Assumption 1,

the bounded function (x, ξ) 7→ Gn−1,ξ(x) is continuous at ξ = ηn−1(ξn) uniformly

on En−1; the induction hypothesis applies and ηNn−1(Gn−1,N ) converges in probability

to ηn−1(Gn−1). Similarly, since Qn(ϕ̄) ∈ Bb(En−1) is bounded by boundedness of

ϕ̄n, it follows that ηNn−1[Qn(ϕ̄n)] converges in probability to ηn−1[Qn(ϕ̄n)]. Slutsky’s

Lemma thus yields that B2(N) and B3(N) converge to zero in probability. Finally,

note that by Assumption 1 the bounded function (x, ξ) 7→ Qn,ξ(x, ϕ̄n) is continuous

at ξ = ηn−1(ξn) uniformly on En−1; the induction yields

lim
N→∞

ηNn−1

{
[Qn,N −Qn](ϕ̄n)

}
= lim
N→∞

{
ηNn−1[Qn,N (ϕ̄n)]− ηn−1[Qn(ϕ̄n)]

}
− lim
N→∞

{
ηNn−1[Qn(ϕ̄n)]− ηn−1[Qn(ϕ̄n)]

}
= 0 ,

which is enough for concluding that B1(N) converges to zero in probability.

As a corollary, one can establish a similar consistency result for the sequence of particle

approximations γNn (ϕn), defined in Equation (7), of the unnormalised quantity γn(ϕn).

Corollary 4.2. Assume (A1). Let n ≥ 0, r ≥ 1 and ϕn : En → Rr be a bounded measurable

function. The following limit holds in probability, limN→∞ γNn (ϕn) = γn(ϕn).

Proof. Since γNn (ϕn) = γNn (1) ηNn (1) and γn(ϕn) = γn(1) ηNn (1), by Corollary 4.1 it suffices

to prove that γNn (1) = ηN0 (G0) × . . . × ηNn−1(Gn−1) converges in probability to the value

γn(1) = η0(G0)× . . .× ηn−1(Gn−1). By Assumption 1, the potentials {Gp}p≥0 are bounded

so that Corollary 4.1 applies and the quantity ηNp (Gp) converges in probability to ηp(Gp)

for any index p ≥ 0. The conclusion directly follows.

4.3 Central Limit Theorems

In this section, for a test function ϕn : En → Rr, we carry out a fluctuation analysis of the

particle approximations γNn (ϕn) and ηNn (ϕn) around their limiting value. As expected, we

11



prove that there is convergence at standard Monte-Carlo rate N−1/2; in some situations,

comparison with the perfect and non-adaptive algorithm is discussed in Section 4.4.

Theorem 4.2. Assume (A1-2). Let n ≥ 0, r ≥ 1 and ϕn : En → Rr be a bounded mea-

surable function. The sequence
√
N [γNn − γn](ϕn) converges weakly to a centered Gaussian

distribution with covariance
n∑
p=0

γp(1)2 Σηp(Lp,nϕn) (11)

where the linear operator Lp : Bb(Ep)r → Bb(Ep−1)r is defined by

Lpϕp = ηp−1[∂ξQpϕp]
(
ξp − ηp−1(ξp)

)
+Qp(ϕp) (12)

with Lp,n := Lp+1 ◦ . . . ◦Ln and Ln,n = Id.

Proof. For notational convenience, we concentrate on the scalar case r = 1. The proof of

the multi-dimensional case is identical, with covariance matrices replacing scalar variances.

We proceed by induction on the parameter n ≥ 0. The case n = 0 follows from the usual

CLT for i.i.d. random variables. To prove the induction step it suffices to show that for any

t ∈ R the following identity holds

lim
N→∞

E [ eit
√
N [γNn −γn](ϕn) ] = e−

1
2 t

2 γn(1)2 Σηn (ϕn) lim
N→∞

E [ eit
√
N [γNn−1−γn−1](Lnϕn) ] . (13)

Indeed, assuming that the induction hypothesis holds at time n− 1, we have that

lim
N→∞

E [ eit
√
N [γNn−1−γn−1](Lnϕn) ] = exp

{
− 1

2 t
2
n−1∑
p=0

γp(1)2 Σηp(Lp,nϕn)
}

and the proof of the induction step then follows from Levy’s continuity theorem and (13).

To prove (13) we use the following decomposition

[γNn − γn](ϕn) =
{
γNn (ϕn)− En−1[γNn (ϕn)]

}
+
{
En−1[γNn (ϕn)]− γn(ϕn)

}
=: Ã(N) + B̃(N) .

Since B̃(N) ∈ FN
n−1 the expectation E[eit

√
N [γNn −γn](ϕn)] can be decomposed as

E
[(

En−1

[
eit
√
NÃ(N)

]
− e− 1

2 t
2 γn(1)2 Σηn (ϕn)

)
× eit

√
N B̃(N)

]
+ e−

1
2 t

2 γn(1)2 Σηn (ϕn) × E
[
eit
√
N B̃(N)

]
.

As a consequence, (13) follows once it is established that the limit

lim
N→∞

En−1

[
eit
√
NÃ(N)

]
= exp

{
− 1

2 t
2 γn(1)2 Σηn(ϕn)

}
(14)

holds in probability and that
√
N B̃(N) =

√
N [γNn−1 − γn−1](Ln(ϕn)) + oP(1). We finish

the proof of Theorem 4.2 by establishing these two results.

12



• Quantity Ã(N) also reads as γNn (1)A(N) with A(N) :=
[
ηNn − Φn,N (ηNn−1)

]
(ϕn). By

Corollary 4.2, γNn (1) converges in probability to γn(1); to prove that En−1

[
eit
√
NÃ(N)

]
converges in probability to exp

{
− 1

2 t
2 γn(1)2 Σηn(ϕn)

}
it thus suffices to show that

En−1

[
eit
√
NA(N)

]
converges in probability to exp

{
− 1

2 t
2 Σηn(ϕn)

}
. We will exploit

the following identity

En−1

[
ei t
√
N A(N)

]
= En−1

[
ei t {ϕn(XN )−En−1[ϕn(XN )]}/

√
N
]N

with XN is distributed according to
∑N
i=1

Gn−1,N (xin−1)∑N
j=1Gn−1,N (xin−1)

Mn,N (xin−1, dx). Since

the test function ϕn is bounded, a Taylor expansion yields that

En−1

[
ei t {ϕn(XN )−En−1[ϕn(XN )]}/

√
N
]

= 1− t2

N Varn−1[ϕn(XN )] +N−3/2 ×OP(1) .

Consequently, En−1[eit
√
N A(N)] = exp

{
−t2 Varn−1[ϕn(XN )]/2

}
+oP(1) and the proof

is complete once it is shown that

Varn−1[ϕn(XN )] =

N∑
i=1

Gn−1,N (xin−1)Mn,N (ϕ2
n)(xin−1) /

N∑
i=1

Gn−1,N (xin−1)

−
{ N∑
i=1

Gn−1,N (xin−1)Mn,N (ϕn)(xin−1) /

N∑
i=1

Gn−1,N (xin−1)
}2

= ηNn−1

[
Qn−1,ηNn−1(ξn)ϕ

2
n

]
/ ηNn−1

[
Gn−1,ηNn−1(ξn)

]
−
{
ηNn−1

[
Qn−1,ηNn−1(ξn)ϕn

]
/ ηNn−1

[
Gn−1,ηNn−1(ξn)

]}2

converges in probability to Σηn(ϕn). By Assumption 1, functions (x, ξ) 7→ Gn−1,ξ(x),

(x, ξ) 7→ Qn,ξϕn(x), (x, ξ) 7→ Qn,ξϕ
2
n(x) are bounded and continuous at ξ = ηn−1(ξn)

uniformly on En−1. By Corollary 4.1, ηNn−1(ξn) converges in probability to ηn−1(ξn);

by Theorem 4.1 and Slutsky’s Lemma we get that Varn−1[ϕn(XN )] converges in prob-

ability to

ηn−1[Qn(ϕ2
n)]/ηn−1(Gn)−

(
ηn−1[Qn(ϕn)]/ηn−1(Gn)

)2
,

which is another formula for ηn(ϕ2
n)− ηn(ϕn)2 = Σηn(ϕn), as required.

• To prove that
√
N B̃(N) =

√
N [γNn−1 − γn−1](Ln(ϕn)) + oP(1) we write B̃(N) as

γNn−1(1)× ηNn−1[Qn,N −Qn](ϕn) + [γNn−1 − γn−1](Qnϕn) . (15)

Furthermore, we have

ηNn−1[Qn,N −Qn](ϕn) = ηNn−1 [ω(·, ηNn−1(ξn)) ]× [ηNn−1 − ηn−1](ξn) (16)
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with ω(x, z) :=
∫ 1

0
∂ξQn,ξϕn(x)|ξ=ηn−1(ξn)+λ(z−ηn−1(ξn)) dλ. Under Assumption 2,

function ω is bounded and continuous at z = ηn−1(ξn) uniformly over x ∈ En−1. Theo-

rem 4.1 applies so that ηNn−1 [ω(·, ηNn−1(ξn)) ]→ ηn−1 [ω(·, ηn−1(ξn)) ] = ηn−1[∂ξQn(ϕ)],

in probability. The induction hypothesis, Slutky’s Lemma and standard manipulations

yield that
√
N × γNn [Qn,N −Qn](ϕn) equals

√
N × ηn−1

[
∂ξQn(ϕ)]× [γNn−1 − γn−1](ξn − ηn−1(ξn)) + oP(1) .

It then follows from (15) that
√
N B̃(N) =

√
N [γNn−1 − γn−1](Lnϕn) + oP(1).

This concludes the proof of the induction steps and finishes the proof of Theorem 4.2.

In the case where the summary statistics are constant, i.e. ξp ≡ C ∈ R for p ≥ 0,

expression (11) reduces to the usual non-adaptive asymptotic variance as presented, for

example, in [9]. In the special case ϕn ≡ 1, one obtains the following expression for the

asymptotic variance of the relative normalisation constant γNn (1)/γn(1).

Corollary 4.3. Assume (A1-2) and let n ≥ 0 be a non-negative integer. Then the quantity
√
N
{
γNn (1)/γn(1) − 1

}
converges, as N → ∞, to a centered Gaussian distribution with

variance
n∑
p=0

Varηp(Lp,n 1)∏n−1
k=p ηk(Gk)2

.

Similarly, one can obtain a CLT for the empirical normalised measures ηNn (ϕn):

Theorem 4.3. Assume (A1-2). Let n ≥ 0, r ≥ 1 and ϕn : En → Rr be a bounded mea-

surable function. The sequence
√
N [ηNn − ηn](ϕn) converges weakly to a centered Gaussian

distribution with covariance

Σn(ϕn) :=

n∑
p=0

γp(1)2

γn(1)2
Σηp

[
Lp,n

(
ϕn − ηn(ϕn)

)]
(17)

with the linear operators Lp for p ≥ 0 as defined in (12). The asymptotic variances satisfy

Σn(ϕn) := Σηn(ϕn) +
Σn−1

[
Ln

(
ϕn − ηn(ϕn)

)]
ηn−1(Gn−1)2

. (18)

Proof. One can verify that the normalised measure ηNn is related to the unnormalised mea-

sure γNn through the identity ([9, pp. 301])

[ηNn − ηn](ϕn) =
γn(1)

γNn (1)
γNn
[

1
γn(1) (ϕn − ηn(ϕn))

]
.

By Corollary 4.2, γn(1)/γNn (1) converges in probability to 1. Slutsky’s Lemma and Theorem

4.2 yield that
√
N [ηNn −ηn](ϕn) converges weakly to a centered Gaussian variable with vari-

ance
∑n
p=0 γp(1)2 Σηp [Lp,n

(
γn(1)−1(ϕn−ηn(ϕn)

)
], which is just another way of writing (17).

Equation (18) follows from the identities γp(1) =
∏p−1
k=0 ηk(Gk), ηn−1(Lnϕn) = ηn(ϕn).
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4.4 Stability

We now show that in the majority of applications of interest, the asymptotic variance of the

adaptive SMC algorithm is identical to the asymptotic variance of the perfect algorithm.

Theorem 4.4 (Stability). Assume (A1-2). Suppose further that for any index n ≥ 1 the

identity

ηn−1(Gn−1,ξMn,ξ)/ηn−1(Gn−1,ξ) = ηn (19)

holds for any parameter ξ ∈ Dom(ξn). For any test function ϕn ∈ Bb(En), the asymptotic

variance of the adaptive SMC algorithm identified in Theorem 4.2 equals the asymptotic

variance of the perfect SMC algorithm.

Proof. Formula (12) shows that it suffices to prove that the term ηn−1(∂ηQnϕn) vanishes.

By differentiation under the integral sign, it is enough to prove that the mapping ξ 7→

ηn−1(Qn,ξϕn) is constant on Dom(ξn). Indeed, it follows from (19) that ηn−1(Qn,ξϕn) =

ηn(ϕn) for any ξ ∈ Dom(ξn), concluding the proof of Theorem 4.4.

Theorem 4.4 applies for instance to the sequential Bayesian parameter inference context

discussed in Section 3.1 and to the filtering setting of Section 3.2. A consequence of Theorem

4.4 is that standard behaviours for the asymptotic variance of the perfect SMC algorithm,

such as linear growth of the asymptotic variance of
√
N
(
γNn (1)/γn(1)− 1

)
, are inherited by

the adaptive SMC algorithm.

5 Adaptive Tempering

We now look at the scenario when one uses the information in the evolving particle popu-

lation to adapt a sequence of distributions by means of a tempering parameter β ∈ (0, 1).

5.1 Algorithmic Set-Up

In many situations in Bayesian inference one seeks to sample from a distribution π on a set

E of the form

π(dx) = 1
Z e
−β∗ V (x)m(dx)

where Z is a normalisation constant, m(dx) a dominating measure on the set E and

V : E → R a potential. Coefficient β∗ ∈ R can be thought of as an inverse tempera-

ture parameter. A frequently invoked algorithm involves forming a sequence of ‘tempered’
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probability distributions

ηn(dx) =
1

Z(βn)
e−βnV (x)m(dx)

for inverse temperatures β0 ≤ . . . ≤ βn−1 ≤ βn ≤ · · · ≤ βn∗ = β∗; in many applications

β∗ = 1. The associated unnormalised measures are

γn(dx) = e−βnV (x)m(dx) .

Particles are propagated from ηn−1 to ηn through a Markov kernel Mn that preserves ηn.

In other words, the algorithm corresponds to the SMC approach discussed in Section 2 with

potentials

Gn(x) = e−∆n V (x) , ∆n := βn+1 − βn ,

and Markov kernels Mn satisfying ηnMn = ηn. For test function ϕn ∈ Bb(E), the N -particle

approximation of the normalised and unnormalised distribution are given in (5), (7). To

be consistent with the notations introduced in Section 4.3, note that the normalisation

constants also read as Z(βn) = γn(1) and Z = Z(β∗) = γn∗(1). In most scenarios of

practical interest, it can be difficult or even undesirable to decide a-priori upon the annealing

sequence {βn}n∗n=0. Indeed, if the chosen sequence features big gaps, one may reach the

terminal temperature rapidly, the variance of the weights being potentially very large due

to large discrepancies between consecutive elements of the bridging sequence of probability

distributions. Alternatively, if the gaps between the annealing parameters are too small,

the variance of the final weights can be very small; this comes at the price of needlessly

wasting a lot of computation time. Knowing what constitutes ‘big’ or ‘small’ with regards

to the temperature gaps can be very-problem specific. Thus, an automated procedure for

determining the annealing sequence is of great practical importance. In this section we

investigate the asymptotic properties of an algorithm where the temperatures, as well as

statistics of the MCMC kernel, are determined empirically by the evolving population of

particles.

A partial analysis of the algorithm to be described can be found in [16]. However, the

way in which the annealing sequence is determined in that work does not correspond to one

typically used in the literature. In addition, the authors assume that the perfect MCMC

kernels are used at each time step, whereas we do not assume so. It should also be noted,

however, that the analysis in [16] is non-asymptotic.

The adaptive version of the above described algorithm constructs the (random) temper-

atures sequence {βNp }p≥0 ‘on the fly’ as follows. Once a proportion α ∈ (0, 1) has been
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specified, the random tempering sequence is determined through the recursive equation

βNn+1 = inf
{
βNn < β ≤ β∗ : ESS(ηNn , e

−(β−βNn )V ) = α
}

(20)

initialized at a prescribed value β0 typically chosen so that the distribution η0 is easy to

sample from. For completeness, we use the convention that inf ∅ = β∗. In the above

displayed equation, we have used the ESS functional defined for a measure η on the set E

and a weight function ω : E → (0,∞) by

ESS(η, ω) := η(ω)2/η(ω2) .

The following lemma guaranties that under mild assumptions the effective sample size func-

tional β 7→ ESS(ηp, e
−(β−βn)V ) is continuous and decreasing so that (20) is well-defined and

the inverse temperature βn+1 can be efficiently computed by a standard bisection method.

Lemma 5.1. Let η be a finite measure on the set E and V : E → R be a bounded potential.

Then, the function λ 7→ ESS(η, e−λV ) is continuous and decreasing on [0,∞). Furthermore,

if P [V (X) 6= V (Y ) ] > 0 for X,Y independent and distributed according to η, the function

is strictly decreasing.

Proof. We treat the case where P [V (X) 6= V (Y ) ] > 0, the case P [V (X) 6= V (Y ) ] = 0

being trivial. Let X and Y be two independent random variables distributed according

to η. The dominated convergence theorem shows that the function λ 7→ ESS(η, e−λV ) is

continuous, with a continuous derivative. Standard manipulations show that the derivative

is strictly negative if η(V e−λV ) η(e−2λV ) > η(e−λV ) η(V e−2λV ), which is equivalent to the

condition

E
[
e−λ{V (X)+V (Y )} ×

{
V (X)− V (Y )

}
×
{
e−λV (X) − e−λV (Y )

}]
< 0 .

This last condition is satisfied since for any x, y ∈ R and any λ > 0 we have the inequality

{V (x)− V (y)}{e−λV (x) − e−λV (y)} < 0, with strict inequality for x 6= y.

We will assume that the sequence of temperatures {βn}n≥0 and {βNn }n≥0 are defined

for any index n ≥ 0, using the convention that the first time that the parameter βNn

reaches the level β∗, which is random for the practical algorithm, the algorithm still goes

on with fixed inverse temperatures equal to β∗. Under this convention, we can carry out an

asymptotic analysis using an induction argument. Ideally one would like to prove asymptotic

consistency (and a CLT) for the empirical measure at the random termination time of the

practical algorithm; we do not do this, due to the additional technical challenge that it
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poses. We believe that the result to be proven still provides a very satisfying theoretical

justification for the practical adaptive algorithm. We assume from now on that for the

perfect algorithm the sequence of inverse temperatures is given by the limiting analogue of

(20),

βn+1 = inf
{
βn < β ≤ β∗ : ESS(ηn, e

−(β−βn)V ) = α
}
. (21)

We will show in the next section that under mild assumptions the adaptive version βNn

converges in probability towards βn. For statistics ξn+1 : E → Rd we set

θNn =
(
βNn , β

N
n+1, η

N
n (ξn+1)>

)>
and denote by θn its limiting value. At time n, for a particle system {xin}Ni=1 and associated

empirical distribution ηNn targeting the distribution ηn, the next inverse temperature βNn+1

is computed according to (20); the particle system is re-sampled according to a multinomial

scheme with weights

Gn,N (x) := e−∆N
n V (x) ; ∆N

n = βNn+1 − βNn ,

and then evolves via a Markov kernel Mn+1,N ≡ Mn+1,ηNn (ξn+1),βNn+1
that preserves the

preserves Z(βNn+1)−1 e−β
N
n+1 V m(dx). Similarly to Section 2.2, we will make use of the

operator

Qn,N (x, dy) ≡ Gn−1,N (x)Mn,N (x, dy)

and its limiting analogue Qn. With these notations, note that Equation (6) holds. To

emphasise the dependencies upon the parameter θ = (β1, β2, η), we will sometimes use

the expression Qn,θ = Gn,θ(x)Mn,η,β2
(x, dy) with Gn,θ = e−(β2−β1)V = e−∆V and ∆ =

β2 − β1. For notational convenience, we sometimes write ∂∆ when the meaning is clear.

For example, by differentiation under the integral sign, the quantity ∂∆ηn(Gn) also equals

−ηn(V Gn). Unless otherwise stated, the derivative ∂θ is evaluated at the limiting parameter

θn = (βn, βn+1, ηn(ξn+1)).

5.2 Assumptions

We define Dom(β) = {(β1, β2) ∈ [β0, β∗]
2 ; β1 ≤ β2}. By Dom(ξp) ⊂ Rd we denote a convex

set that contains the range of the statistic ξp : Ep−1 → Rd. The results to be presented in

the next section make use of the following hypotheses.

(A3) The potential V is bounded on the set E. For each n ≥ 0 the function (x, θ) 7→ Gn,θ(x)

is bounded and continuous at θn =
(
βn, βn+1, ηn(ξn+1)

)
uniformly on E. The statistic

18



ξn : E → Rd is bounded. For any bounded Borel test function ϕn : E → Rr, the

function (x, θ) 7→ Qn,θϕn(x) is bounded and continuous at θ = θn−1 uniformly on E.

(A4) For each n ≥ 1, r ≥ 1 and bounded Borel test function ϕn : E → Rr the function

(x, θ) 7→ ∂θQn,θ ϕn(x) is well defined, bounded and continuous at θ = θn−1 uniformly

on E.

These conditions could be relaxed at the cost of considerable technical complications in the

proofs.

5.3 Weak Law of Large Numbers

In this section we prove that the consistency results of Section 4.2 also hold in the adaptive

annealing setting. To do so, we prove that for any index n ≥ 0 the empirical inverse

temperature parameter βNn converges in probability towards βn.

Theorem 5.1 (WLLN). Assume (A3). For any n ≥ 0, the empirical inverse temperature

βNn converges in probability to βn as N → ∞. Also, let V be a Polish space and {VN}N≥0

a sequence of V-valued random variables that converges in probability to v ∈ V. Let r ≥ 1

and ϕn : E × V → Rr a bounded function continuous at v ∈ V uniformly on E. Then, the

following limit holds in probability

lim
N→∞

ηNn [ϕn(·, VN )] = ηn[ϕn(·, v)] .

Corollary 5.1 (WLLN). Assume (A3). Let n ≥ 0, r ≥ 1 and ϕn : E → Rr be a bounded

measurable function. The following limit holds in probability, limN→∞ ηNn (ϕn) = ηn(ϕn).

Corollary 5.2. Assume (A3). Let n ≥ 0, r ≥ 1 and ϕn : E → Rd a bounded measurable

function. The following limit holds in probability, limN→∞ γNn (ϕn) = γn(ϕn).

Proof of Theorem 5.1. Clearly, it suffices tp concentrate on the case r = 1. We prove by

induction on the rank n ≥ 0 that βNn converges in probability to βn and for any test function

ϕ : E × V → R bounded and continuous at v ∈ V uniformly on E that [ηNn − ηn](ϕ) →P 0.

The initial case n = 0 is a direct consequence of WLLN for i.i.d. random variables and

Definition 2.1. We assume the result at rank n− 1 and proceed to the induction step.

• We first focus on proving that βNn converges in probability to βn. Note that βNn can

also be expressed as

βNn := inf
{
β ∈ [β0, β∗] :

ζN1,n−1(β)

ζN2,n−1(β)
≤ α

}
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with ζN1,n−1(β) = ηNn−1[e−max(0,β−βNn−1)V ]2 and ζN2,n−1(β) = ηNn−1[e−2 max(0,β−βNn−1)V ].

Indeed, the limiting temperature βn can also be expressed as

βn := inf
{
β ∈ [β0, β∗] :

ζ1,n−1(β)

ζ2,n−1(β)
≤ α

}
where ζ1,n−1(β) and ζ2,n−1(β) are the limiting values of ζN1,n−1(β) and ζN2,n−1(β). The

dominated convergence theorem shows that the paths β 7→ ζN1,n−1(β)/ζN2,n−1(β) and

β 7→ ζ1,n−1(β)/ζ2,n−1(β) are continuous; it thus suffices to prove that the limit

lim
N→∞

∥∥ζN1,n−1(β)/ζN2,n−1(β)− ζ1,n−1(β)/ζ2,n−1(β)
∥∥
∞,[β0,β∗]

= 0 (22)

holds in probability. Lemma 5.1 shows that the function β 7→ ζNi,n−1(β) is decreasing

on [β0, β∗] for any 1 ≤ i ≤ 2 and n,N ≥ 1; by standard arguments, for proving (22)

it suffices to show that for any fixed inverse temperature β ∈ [β0, β∗] the difference

ζN1,n−1(β)/ζN2,n−1(β)−ζ1,n−1(β)/ζ2,n−1(β) converges to zero in probability. Indeed, one

can focus on proving that ζNi,n−1(β) converges in probability to ζi,n−1(β) for i ∈ {1, 2}.

We present the proof for i = 2, the case i = 1 being entirely similar.

– For the case β < βn−1, the induction hypothesis shows that βNn−1 converges in

probability to βn−1. Since ζN2,n−1(β) = 1 = ζ2,n−1(β) for β ≤ min(βNn−1, βn−1),

the conclusion follows.

– The case β ≥ βn−1 follows from the convergence in probability of βNn−1 to βn−1

and ηNn−1(e−(β−βn−1)V ) to ηn−1(e−(β−βn−1)V ).

• To prove that ηNn [ϕn(·, VN )] converges in probability towards ηn[ϕn(·, v)], because of

the convergence in probability of βNn to βn, of ηNn−1(ξn) to ηn−1(ξn) and of Vn to v,

one can use exactly the same approach as the one in the proof of Theorem 4.1.

5.4 Central Limit Theorem

In this section we extend the fluctuation analysis of Section 4.3 to the adaptive annealing

setting. We prove that for a test function ϕn the empirical quantity γNn (ϕn) converges

at N−1/2-rate towards its limiting value γn(ϕn); we give explicit recursive expressions for

the asymptotic variances. It is noted that results for ηNn (ϕn) may also be proved as in

Section 4.3, but are omitted for brevity. Before stating the main result of this section,

several notations need to be introduced. For any n ≥ 0 and test function ϕn : E → Rr
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we consider the extension operator Extn that maps the test function ϕn to the function

Extn(ϕn) : E → Rr+2 defined by

Extn(ϕ) :=
(
Gn − ηn(Gn), G2

n − ηn(G2
n), ϕn

)>
.

The linear operator An maps the bounded Borel function ϕn : E → Rr to the rectangu-

lar (r + 1) × (r + 3) matrix An(ϕn) defined by [An(ϕn)]1,1 = 1, [An(ϕ)]1,[4:r+3] = 01×r,

[An(ϕn)][2:r+1],[4:r+3] = Ir×r and

[An(ϕn)]1,2 = −2γ−1
n−1(1)

ηn−1(Gn−1)

ηn−1(G2
n−1)

·
{
∂∆

[ηn−1(Gn−1)2

ηn−1(G2
n−1)

]}−1

;

[An(ϕn)]1,3 = γ−1
n−1(1)

ηn−1(Gn−1)2

ηn−1(G2
n−1)2

·
{
∂∆

[ηn−1(Gn−1)2

ηn−1(G2
n−1)

]}−1

;

[An(ϕn)]2:r+1,1 =
(
∂βn−1

+ ∂βn
)
ηn−1(Qnϕn) ;

[An(ϕn)]2:r+1,2 = γn−1(1) ηn−1[∂βnQnϕn]× [An(ϕn)]1,2 ;

[An(ϕn)]2:r+1,3 = γn−1(1) ηn−1[∂βnQnϕn]× [An(ϕn)]1,3 .

Theorem 5.2 (CLT). Assume (A3)-(A4). Let n ≥ 0, r ≥ 1 and ϕn : En → Rr be a bounded

measurable function. The sequence
√
N
(
βNn − βn, [γNn − γn](ϕn)

)>
converges weakly to a

centred Gaussian distribution with covariance

Σn(ϕn) = An(ϕn) · Σn−1

(
Extn−1(Qnϕn)

)
· An(ϕn)> + γ2

n(1) Σ̃ηn(ϕn) (23)

where Σ̃ηn(ϕn) is the covariance matrix of the function
(
0, ϕn

)>
under ηn.

Proof. The proof follows closely the one of Theorem 4.2. For the reader’s convenience, we

only highlight the differences. The proof proceeds by induction, the case n = 0 directly

following from the CLT for i.i.d random variables. For proving the induction step, assuming

that the result holds at rank n− 1, it suffices to prove that

En−1

 βNn − βn[
γNn − γn

]
(ϕn)

 = An,N (ϕn)

 βNn−1 − βn−1[
γNn − γn

](
Ext[Qnϕn]

)
 , (24)

with An,N (ϕn) ∈ Mr+1,r+3(R) converging in probability to An(ϕn), and that for any vector

t ∈ Rr the following limit holds in probability

lim
N→∞

E
[

exp
{
i t
√
N C(N)

]
= exp

{
− γ2

n(1) 〈t,Σηn(ϕn) t〉/2
}

with C(N) = (γNn − γn)(ϕn) − En−1

[
(γNn − γn)(ϕn)

]
. The proof of the above displayed

equation is identical to the proof of (14) and is thus omitted. We now prove (24).
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• We first treat the term En−1[βNn −βn] = βNn −βn. The relation ESS(ηNn−1, e
−∆N

n−1 V ) =

α = ESS(ηn−1, e
−∆n−1 V ) can be rearranged as

ηn−1(Gn−1)2
{
ηNn−1(e−2∆N

n−1V )− ηn−1(e−2∆n−1V )
}

=

ηn−1(G2
n−1)

{
ηNn−1(e−∆N

n−1V )2 − ηn−1(e−∆n−1V )2
}
.

(25)

Decomposing ηNn−1(e−2∆N
n−1V ) − ηn−1(e−2∆n−1V ) as the sum of ηNn−1(e−2∆N

n−1V ) −

e−2∆n−1V ) and [ηNn−1 − ηn−1](G2
n−1), and using a similar decomposition for the dif-

ference ηNn−1(e−∆N
n−1V )2 − ηn−1(e−∆n−1V )2, one can exploit the boundedness of the

potential V , Theorem 5.1 and the same approach as the one used for proving (16) to

obtain that ηNn−1(e−2∆N
n−1V )− ηn−1(e−2∆n−1V ) equals{

∂∆ηn−1(G2
n−1) + oP(1)

}
× (∆N

n−1 −∆n−1) + [ηNn−1 − ηn−1](G2
n−1) (26)

and [ηNn−1(κ∆N
n−2)2 − ηn−2(κ∆n−2)2] equals{

2ηn−1(Gn−1)∂∆ηn−1(Gn−1) + oP(1)
}
× (∆N

n−2 −∆n−2)

+
{

2ηn−1(Gn−1) + oP(1)
}
× [ηNn−1 − ηn−1](Gn−1) .

(27)

Since (∆N
n−1−∆n−1) equals (βNn −βn) + (βNn−1−βn−1), Slutsky’s Lemma, Equations

(25), (26), (27) and standard algebraic manipulations yield

(βNn − βn) = [An,N (ϕ)]1,1 (βNn−1 − βn−1)

+ [An,N (ϕ)]1,2 [γNn−1 − γn−1]
(
Gn−1 − ηn−1(Gn−1)

)
+ [An,N (ϕ)]1,3 [γNn−1 − γn−1]

(
G2
n−1 − ηn−1(G2

n−1)
) (28)

where [An,N (ϕ)]1,i converges in probability to [An,N (ϕ)]1,i for 1 ≤ i ≤ 3.

• To deal with the term En−1

[
(γNn − γn)(ϕn)

]
we make use of the decomposition

En−1

[
(γNn −γn)(ϕn)

]
= γNn−1(1)×ηNn−1[Qn,N−Qn](ϕn)+[γNn−1−γn−1](Qnϕn) . (29)

Assumptions (A3)-(A4), Theorem 5.1 and the same approach as the one used for

proving (16) show that the term ηNn−1[Qn,N −Qn](ϕn) equals{
ηn−1[∂βn−1Qnϕn] + oP(1)

}
(βNn−1 − βn−1) +

{
ηn−1[∂βnQnϕn] + oP(1)

}
(βNn − βn) .

Note that there is no term involving the derivative with respect to the value of the

summary statistics; indeed, this is because for any value of ξ ∈ Rr the Markov kernel

Mn,ξ preserves ηn so that one can readily check that ηn−1[∂ξQn,ξϕn] = 0. One can

then use (28) to express (βNn − βn) in terms of the three quantities (βNn−1 − βn−1),
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[γNn−1−γn−1]
(
Gn−1−ηn−1(Gn−1)

)
and [γNn−1−γn−1]

(
G2
n−1−ηn−1(G2

n−1)
)

and obtain,

via Slutsky’s Lemma and (29), that for any coordinate 1 ≤ i ≤ r,

En−1

[
(γNn − γn)(ϕn)

]
i

= [An,N (ϕ)]i+1,1 (βNn−1 − βn−1)

+ [An,N (ϕ)]i+1,2 [γNn−1 − γn−1]
(
Gn−1 − ηn−1(Gn−1)

)
+ [An,N (ϕ)]i+1,3 [γNn−1 − γn−1]

(
G2
n−1 − ηn−1(G2

n−1)
)

+ [γNn−1 − γn−1](Qnϕn)i

(30)

where [An,N (ϕ)]i+1,j converges in probability to [An(ϕ)]i+1,j for 1 ≤ j ≤ 3.

Equation (24) is a simple rewriting of (28) and (30). This concludes the proof.

6 Applications

6.1 Verifying the Assumptions

We consider the sequential Bayesian parameter inference framework of Section 3.1. That

is, for a parameter x ∈ E = Rm, observations yi ∈ Y and prior measure with density η0(x)

with respect to the Lebesgue measure in Rm. We assume the following.

(B1) For each n ≥ 1 the function Gn(x) := P[yn+1 | y1:n, x] is bounded and strictly positive.

The statistics ξn : E → Rd is bounded.

(B2) For each n ≥ 1, the parametric family of Markov kernel Mn,ξ is given by a Random-

Walk-Metropolis kernel. The proposal density q(·; ξ) is symmetric; for a current posi-

tion x ∈ E the proposal y is such that P(y − x ∈ du) = q(u; ξ) du. We suppose that

the first and second derivatives

ξ 7→ ∇ξq(u; ξ) ; ξ 7→ ∇2
ξq(u; ξ) ,

are bounded on the range Dom(ξn) of the adaptive statistics ξn : E → Dom(ξn) ⊂ Rd.

Assumption (B1) is reasonable and satisfied by many real statistical models. Similarly,

it is straightforward to construct proposals verifying Assumption (B2); one can for example

show that for a function σ : Dom(ξn)→ R+, bounded away from zero with bounded first and

second derivatives, the Gaussian proposal density q(u; ξ) := exp
{
−u2/[2σ2(ξ)]

}
/
√

2πσ2(ξ)

satisfies Assumption (B2); multi-dimensional extensions of this settings are readily con-

structed.
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Proposition 6.1. Assume (B1-2). The kernels (Mn,·)n≥1 and potentials (Gn)n≥0 satisfy

Assumptions (A1-2).

Proof. By assumption, the potentials {Gn}n≥0 are bounded and strictly positive and the

statistics ξn : E → Rd are bounded. To verify that Assumptions (A1-2) are satisfied, it

suffices to prove that for any test function ϕ ∈ Bb(E), the first and second derivatives of

(x, ξ) 7→Mn,ξϕ(x) exist and are uniformly bounded. The Metropolis-Hastings accept-reject

ratio of the proposal x 7→ x + u is r(x, u) := min
{

1,
(
P[y1:n | x + u] η0(x + u)

)
/
(
P[y1:n |

x] η0(x)
)}

and we have Mn,ξ(ϕ)(x) = ϕ(x) +
∫
Rm
[
ϕ(x + u) − ϕ(x)

]
r(x, u) q(u; ξ) du. Dif-

ferentiation under the integral sign yields

∇ξMn,ξ(ϕ)(x) =

∫ [
ϕ(x+ u)− ϕ(x)

]
r(x, u)∇ξq(u; ξ) du ,

∇2
ξMn,ξ(ϕ)(x) =

∫ [
ϕ(x+ u)− ϕ(x)

]
r(x, u)∇2

ξq(u; ξ) du ,

and the conclusion follows by boundedness of the first and second derivative of q(u; ξ) with

respect to the parameter ξ ∈ Dom(ξn).

6.2 Numerical Example

We now provide a numerical study of a high-dimensional sequential Bayesian parameter

inference, as described in Section 3.1, applied to the Navier-Stokes model. In this section,

we briefly describe the Navier-Stokes model, the associated SMC algorithm and focus on

the analysis of the behavior of the method when estimating the normalising constant. The

SMC method to be presented is described in detail in [18]. In the subsequent discussion, we

highlight the algorithmic challenges and the usefulness of the adaptive SMC methodology

when applied to such high-dimensional scenarios. This motivates theoretical results pre-

sented in Section 6.2.3 where the stability properties of the SMC estimates are investigated

in the regime where the dimension d of the adaptive statistics is large.

6.2.1 Model Description

We work with the Navier-Stokes dynamics describing the incompressible flow of a fluid in a

two dimensional torus T = [0, 2π)× [0, 2π). The time-space varying velocity field is denoted

by v(t, x) : [0,∞)× T → R2. The Newton’s laws of motion yield the Navier-Stokes system

of partial differential equations [13]

∂tv − ν∆v + (v · ∇) v = f −∇p , ∇ · v = 0 ,

∫
T
v(x, ·) dx = 0 , (31)
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with initial condition v(x, 0) = u(x). The quantity ν > 0 is a viscosity parameter, p :

T × [0,∞) → R is the pressure field and f : T → R2 is an exogenous time-homogeneous

forcing. For simplicity, we assume periodic boundary conditions. We adopt a Bayesian

approach for inferring the unknown initial condition u = u(x) from noisy measurements of

the evolving velocity field v(·, t) on a fixed grid of points
(
x1, . . . , xM

)
∈ T. Performing

inference with this type of data is referred to as Eulerian data assimilation. Measurements

are available at time tj := j× δ for time increment δ > 0 and index 1 ≤ j ≤ T at each fixed

location xm ∈ T. We assume i.i.d Gaussian measurements error with standard deviation

ε > 0 so that the noisy observations y :=
{
yj,m}j,m for 1 ≤ j ≤ T and 1 ≤ m ≤ M can be

modelled as

yj,m = v (xm, tj) + ε ζj,m

for an i.i.d sequence ζj,m
iid∼ N (0, I2). We follow the notations of [18] and set

U =
{

2π-periodic trigonometric polynomials u : T→ R2
∣∣ ∇ · u = 0 ,

∫
T
u(x)dx = 0

}
.

We use a Gaussian random field prior for the unknown initial condition; as will become

apparent from the discussion to follow, it is appropriate in this setting to assume that the

initial condition u = u(x) belongs the closure U of U with respect to the
(
L2(T)

)2
norm.

The semigroup operator for the Navier-Stokes PDE is denoted by Ψ : U × [0,∞) → U so

that the likelihood for the noisy observation y reads

`(y;u) = exp
{
− 1

2ε2

T∑
j=1

M∑
m=1

∥∥yj,m − [Ψ(u, tj)](xm)
∥∥2
}
/(2πε2)MT . (32)

Under periodic boundary conditions, an appropriate orthonormal basis for U is comprised

of the functions ψk(x) :=
(
k⊥/(2π |k|

)
eik·x for k ∈ Z2

∗ := Z2\{(0, 0)} and k⊥ := (−k2, k1)>,

|k| :=
√
k2

1 + k2
2. The index k corresponds to a bivariate frequency and the Fourier series

decomposition of an element u ∈ U reads

u(x) =
∑
k∈Z2

∗

uk ψk(x) (33)

with Fourier coefficients uk = 〈u, ψk〉 =
∫
T u(x) ·ψk(x) dx. Since the initial condition u ∈ U

is real-valued we have uk = −u−k and one can focus on reconstructing the frequencies in

the subset

Z2
↑ =

{
k = (k1, k2) ∈ Z2

∗ : [k1 + k2 > 0] or [k1 = −k2 > 0]
}
.

We adopt a Bayesian framework and assume a centred Gaussian random field prior η0 on

the unknown initial condition

η0 = N (0, β2A−α) (34)
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with hyper-parameters α, β affecting the roughness and magnitude of the initial vector field.

In (34), A = −P∆ denotes the Stokes operator where ∆ =
(
∂2
x1

+ ∂2
x2
, ∂2

x1
+ ∂2

x2

)
is the

usual Laplacian and P :
(
L2(T)

)2 → U is the Leray-Helmholtz orthogonal projector that

maps a field to its divergence-free and zero-mean part. A simple understanding of the prior

distribution η0 can be obtained through the Karhunen-Loéve representation; a draw from

the prior distribution η0 can be realised as the infinite sum

Z = β
∑
k∈Z2

∗

|k|−α ξk ψk ∼ η0 (35)

where variables {ξk}k∈Z2
∗

correspond standard complex centred Gaussian random variables

with
(
Re(ξk), Im(ξk)

) iid∼ N (0, 1
2 I2
)

for k ∈ Z2
↑ and ξk = −ξ−k for k ∈ Z2

∗ \ Z2
↑. In other

words, a-priori, the Fourier coefficients uk with k ∈ Z2
↑ are assumed independent, normally

distributed, with a particular rate of decay for their variances as |k| increases. Statistical

inference is carried out by sampling from the posterior probability measure η on U defined

as the Gaussian change of measure

dη

dη0
(u) =

1

Z(y)
`(y;u) (36)

for a normalisation constant Z(y) > 0.

6.2.2 Algorithmic Challenges and Adaptive SMC

With a slight abuse of notation we will henceforth use a single subscript to count the

observations and set y(j−1)M+m ≡ yj,m. We will apply an SMC sampler on the sequence of

distributions {ηn}M×Tn=0 defined by

dηn
dη0

(u) =
1

Z(y1:n)
`(y1:n;u) (37)

for a normalisation constant Z(y1:n) and likelihood `(y1:n;u). Note that the state space U

is infinite-dimensional even though in practice, as described in [18], our solver truncates the

Fourier expansion (33) on a pre-specified window of frequencies −kmax + 1 ≤ k1, k2 ≤ kmax

for kmax = 32.

We now describe the MCMC mutation steps used for propagating the N -particle system.

For a tuning parameter ρ ∈ (0, 1), a simple Markov kernel suggested in several articles (see

e.g. [7] and the references therein) for target distributions that are Gaussian changes of

measure of the form (37) is the following. Given the current position u ∈ U , the proposal ũ

is defined as

ũ = ρ u+ (1− ρ2)1/2 Z (38)
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with Z ∼ η0; the proposal is accepted with probability min
(
1, `(y1:n; ũ)/`(y1:n;u)

)
. Proposal

(38) preserves the prior Gaussian distribution (34) for any ρ ∈ (0, 1) and the above Markov

transition is well-defined on the infinite-dimensional space U . It follows that the method

is robust upon mesh-refinement in the sense that ρ does not need to be adjusted as kmax

increases [19]. In contrast, for standard Random-Walk Metropolis proposals, one would have

to pick a smaller step-size upon mesh-refinement; for the optimal step-size, the mixing time

will typically deteriorate as O(k2
max), see e.g. [3]. Still, proposal (38) can be inefficient when

targeting the posterior distribution η when it differs significantly from the prior distribution

η0. Indeed, a-priori the Fourier coefficients uk have known scales appropriately taken under

consideration in (38); a-posteriori, information from the data spreads non-uniformly on the

Fourier coefficients, with more information being available for low frequencies than for high

ones. Taking a glimpse into results from the execution of the adaptive SMC algorithm yet

to be defined, in Figure 1 we plot the fractions, as estimated by the SMC method, between

posterior and prior standard deviations for the Fourier coefficient Re(uk) (left panel) and

Im(uk) (right panel) over all pairs of frequencies k = (k1, k2) with −20 ≤ k1, k2 ≤ 20. In

this case it is apparent that most of the information in the data concentrates on a window of

frequencies around the origin; still there is a large number of variables (around 2 ·102 in this

example) which have diverse posterior standard deviations under the posterior distribution.

The standard deviations of these Fourier coefficients can potentially be very different from

their prior standard deviations.

The approach followed in [18] for constructing better-mixing Markov kernels involves

selecting a ‘window’ of frequencies K =
{
k ∈ Z2

∗ : max(k1, k2) ≤ K
}

, for a user pre-specified

threshold K ≥ 1, and using the following Markov mutation steps within an SMC algorithm.

• Use the currently available particles approximation {ui}Ni=1 of ηn to estimate the

current marginal mean and covariance mNk and ΣNk of the two-dimensional variable

uk =
(
Re(uk), Im(uk)

)
over the window k = (k1, k2) ∈ K ∩ Z2

↑,

mNk = 1
N

N∑
i=1

uik ; ΣNk = 1
N−1

N∑
i=1

(uik −mNk )⊗ (uik −mNk ) .

For high-frequencies k = (k1, k2) ∈ Kc ∩ Z2
↑, only the information contained in the

prior distribution is used and we thus set mNk = 0 and ΣNk = 1
2 |k|

−2α I2.

• For a current position u =
∑
uk ψk, the proposal ũ =

∑
ũk ψk is defined as

ũk = mNk + ρ (uk −mNk ) + (1− ρ2)1/2 Zk
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Figure 1: Ratio of (estimated) posterior vs prior standard deviations for Re(uk) (left panel)

and Im(uk) (right panel) over all pairs k = (k1, k2) with −20 ≤ k1, k2 ≤ 20. The model here

corresponds to: δ = 0.2, m = 4, T = 20, α = 2, β2 = 5, ε2 = 0.2, f(x) = ∇⊥ cos((5, 5)′ · x).

The m = 4 observation locations were at (0, π), (π, 0), (0, 0), (π, π). Samples from the

posterior were generated by applying a version of the adaptive SMC algorithm described in

Section 6.2.2 for K = 7, see [18] for full details. The ‘true’ initial condition was sampled

from the prior; data were then simulated accordingly.

for k ∈ Z2
↑ and Zk ∼ N (0,ΣNk ) and ũ−k = −ũk for Z2

∗ \ Z2
↑; this proposal is accepted

with the relevant Metropolis-Hastings ratio.

• In addition to the above adaptation at the Markov kernel, the analytical algorithm also

involved an annealing step as described in Section 5, whereby additional intermediate

distributions were introduced, if needed, in between any pairs ηn−1, ηn. We found this

to be important for avoiding weight degeneracy and getting a stable algorithm. As

explained in Section 5, the choice of temperatures was determined on the fly, according

to a minimum requirement of the effective sample size (we choose α = 1
3 ).

It is important to note that in this Navier-Stokes setting, the regularity assumptions

adopted in the theoretical parts of this article for the derivation of the asymptotic results

do not apply anymore. As illustrated by this numerical analysis, the asymptotic behaviour

predicted in Theorem 4.4 is likely to hold in far more general contexts. Figure 2 shows a

plot of an estimate of the variance of ZN (y1:n)/Z(y1:n), where ZN (y1:n) is the N -particle
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particle approximation of normalisation constant ZN (y1:n), as a function of the amount of

data n for an adaptive SMC algorithm using N = 500 particles. In this complex setting, the

numerical results seem to confirm the theoretical asymptotic results of Theorem 4.4: the

estimated asymptotic variance seems to grow linearly with n, as one would have expected to

be true for the perfect SMC algorithm that does not use adaptation. This is an indication

that Theorem 4.4 is likely to hold under weaker assumptions than adopted in this article.
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Figure 2: Estimated variance for the estimate of the normalizing constant of adaptive SMC.

The ‘true’ normalizing constant was estimated from 1000 independent runs with N = 500

and the relative variance is estimated when N = 500 over 500 independent runs. The crosses

are the estimated values of the relative variance.

6.2.3 Algorithmic Stability in Large Scale Adaptation

When the dimension d of the adapted statistics is large, as in the Navier-Stokes case (in

our simulation study d = Card(K ∩ Z2
↑) × 5 ≈ [(2K)2/2] × 5 ≈ 500) and potentially in

other scenarios, it is certainly of interest to quantify the effect of the dimensionality d of

the adaptive statistics on the overall accuracy of the SMC estimators. We will make a

first modest attempt to shed some light on this issue via the consideration of a very simple

modelling structure motivated by the Navier-Stokes example and allowing for some simple
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calculations.

For each n ≥ 1 we assume a product form Gaussian target on En = R∞,

ηn =

∞⊗
j=1

N (0, σ2
j ) ,

for a given sequence of variances {σ2
j }∞j=1 that does not depend on the index n ≥ 1. This

represents an optimistic case where the incremental weights Gn(x) are small enough to be

irrelevant for the study of the influence of the dimension d; we set Gn(x) ≡ 1. It is assumed

that the SMC method has worked well up-to time (n − 1) and has produced a collection

of i.i.d. samples {xin−1}Ni=1 from ηn−1. For the mutation step, we consider an adaptive

Metropolis-Hastings Markov kernel Mn,ξ preserving ηn that proposes, when the current

position is x ∈ R∞, a new position x̃ ∈ R∞ distributed as

x̃j = ρ xj + (1− ρ2)1/2N (0, σ̂2
j ) , for 1 ≤ j ≤ d ,

x̃j = ρ xj + (1− ρ2)1/2N (0, σ2
j ) , for j ≥ d+ 1 ,

(39)

where we have set σ̂2
j := (1/N)

∑N
i=1{xin−1,j}2. This corresponds to the adaptive SMC ap-

proach described in Section 2 with a d-dimensional adaptive statistics ξn(x) = (x2
1, . . . , x

2
d).

Thus, the d first coordinates of the proposal are adapted to the estimated marginal variance

while the ideal variance is used for the remaining coordinates. We want to investigate the

effect of the amount of adaptation on the accuracy of the estimator ηNn (ϕ) for a bounded

function ϕ that only depends on the (d+ 1)-th coordinate,

ϕ(x) = ϕ(xd+1) .

Notice that in this simple scenario the Metropolis-Hastings proposal corresponding to the

ideal kernel Mn,ηn−1(ξn) preserves ηn and is thus always accepted; under the ideal kernel,

the particles at time n would still be a set of N i.i.d. samples from ηn. Consequently, any

deviation from the O(N−1/2) rate of convergence for the estimator ηNn (ϕ) will be solely due

to the effect of the adaptation.

We now investigate in this context the behavior of the difference ηNn (ϕ)−ηn(ϕ). Following

the proof of Theorem 4.1 we use the decomposition

[ηNn − ηn](ϕ) = A(N) +B1(N) +B2(N)

where, using the notations of Section 2, we have set A(N) = [ηNn −Φn,N (ηNn−1)](ϕ), B1(N) =

ηNn−1[Qn,N − Qn](ϕ) and B2(N) = [ηNn−1 − ηn−1](Qnϕ). Denoting by ‖·‖2 the L2-norm of

random variables and conditioning upon FNn−1, we have that

‖A(N)‖22 = 1
N E

[
Var [ϕ(x1

n) | FNn−1 ]
]

= O( 1
N ) . (40)
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For B2(N) one can notice that Qn(ϕ) is a bounded mapping from R∞ to R, thus

‖B2(N)‖22 = 1
N Varηn−1

[Qn(ϕ) ] = O( 1
N ) . (41)

The critical term with regards to the effect of the dimension d on the magnitude of the

difference [ηNn − ηn](ϕ) is B1(N). An approach similar to Equation (16) in the proof of

Theorem 4.2 yields

B1(N) = ηNn−1[Qn,N −Qn](ϕ) = ηNn−1

( [
Mn,N −Mn

]
(ϕ)

)
= ηNn−1

[
∂ξMnϕ

]
· [ηNn−1 − ηn−1](ξn) +R =: B̃1(N) +R ,

for a residual random variable R. Controlling the residual term in the above expansion poses

enormous technical challenges and we restrict our analysis to the main order term B̃1(N).

Proposition 6.2. The term B̃1(N) satisfies

‖B̃1(N)‖2 = O
(√

d
N

)
+O

(
d

N3/2

)
.

Proof. See the Appendix.

Proposition 6.2 combined with (40)-(41) suggests that, in a high dimensional setting

with d � 1, it is reasonable to choose N of order O(d), yielding a mean squared error of

order O(1/d). Even if this choice of N should be thought of as a minimum requirement for

the complete sequential method, it could maybe explain the fairly accurate SMC estimates

of the marginal expectation obtained in the Navier-Stokes example when N = 500 and

d ≈ 500; we refer the reader to [18] for further simulation studies.

7 Summary

This article studies the asymptotic properties of a class of adaptive SMC algorithms; weak

law of large numbers and a central limit theorems are established in several settings. There

are several extensions to the work in this article. First, one could relax the boundedness

assumptions used in the paper; our proof technique, also used in [6], is particularly amenable

to this. Second, an approach to deal with the random stopping of some adaptive SMC

algorithms (see Section 5) also needs to be developed. Lastly, one can extend the analysis

to the context of adaptive resampling.
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A Proof of Proposition 6.2

First of all, notice that without loss of generality we can assume that σ2
j = const.. We have

that:

B̃1(N) =

√
d

N
×

d∑
j=1

{∑N
i=1 ∂ξjMn,ξ(ϕ)(xin−1)|ξ=ηn−1(ξn)√

N
·
√
N (ηNn−1 − ηn−1)(ξn,j)

}
/
√
d

≡
√
d

N
×

d∑
j=1

[√
N ηNn−1(Ξ̄n,j) ·

√
NηNn−1(ξ̄n,j)

]
/
√
d (42)

where we have set Ξ̄n,j(x) = ∂ξjMn,ξ(ϕ)(x)|ξ=ηn−1(ξn) and ξ̄n,j(x) = ξn,j(x) − ηn−1(ξn,j).

Clearly, the expectation of the latter variable over ηn−1 is zero, but the same is also true

for the former one. Initially, we will focus on the term Ξ̄n,j(x) as it has some structure

which will be exploited in subsequent calculations. Indeed, considering Mn,ξj (ϕ)(x), for an

arbitrary ξj and the rest ξk, k 6= j, at their limiting ‘correct’ values, we have that:

Mn,ξj (ϕ)(x) = E [ϕ(x′d+1) |x ] = ϕ(xd+1) + E [ a(xj , ξj , Zj) |xj ] ∆ϕ(xd+1) (43)

where we have set ∆ϕ(xd+1) = E [ϕ(x′d+1)− ϕ(xd+1) |xd+1 ]; x′d+1 denotes the Metropolis-

Hastings proposal for the (d+1)-th co-ordinate as specified in (39) ; a(xj , ξj , Zj) denotes the

Metropolis-Hastings acceptance probability which depends only on the current position xj ,

the (arbitrary) scaling choice ξj and the noise Zj ∼ N (0, 1) for simulating the proposal for

the j-th co-ordinate assuming a scaling ξj (that is, we have x′j = ρxj+
√

1− ρ2 ξ
1/2
j Zj). We

will give the explicit formula for a(·) below. Notice that due to the proposal for xd+1 preserv-

ing the target marginally at the (d+ 1)-th co-ordinate, we have that Eηn−1 [ ∆ϕ(xd+1) ] = 0.

Recall that Ξ̄n,j(x) = ∂ξjMn,ξj (ϕ)(x)|ξj=ηn−1(ξn,j), thus to check for the differentiability of

the mapping ξj 7→ E [ a(xj , ξj , Zj) |xj ] we can only resort to analytical calculations, starting

from the fact that (after some algebraic manipulations):

a(xj , ξj , Zj) = 1 ∧ exp
{
− 1

2

(
ξ−1
j − σ

−2
j

)(
x2
j −

{
ρ xj +

√
1− ρ2 ξ

1/2
j Zj

}2 )}
.

After a lot of cumbersome analytical calculations (which are omitted for brevity) we can inte-

grate out Zj and find that i) the derivativeD(xj , ηn−1(ξn,j)) = ∂ξjE [ a(xj , ξj , Zj) |xj ]|ξj=ηn−1(ξn,j)
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exists; ii) D(xj , ηn−1(ξn,j)), with xj ∼ N (0, σ2
j ), has a finite second moment. Thus, contin-

uing from (43) we have:

Ξ̄n,j(x) = ∂ξjMn,ξj (ϕ)(x)|ξj=ηn−1(ξn,j) = D(xj , ηn−1(ξn,j)) ∆ϕ(xd+1) . (44)

The factorisation in (44) will be exploited in the remaining calculations.

Continuing from (42), we now have that:

‖ N√
d
B̃1(N)‖22 = 1

d

d∑
j=1

N2 E
[
{ηNn−1(Ξ̄n,j)}2 {ηN (ξ̄n,j)}2

]
+ 1

d

∑
j,k=1,2,...,d

j 6=k

N2 E
[
ηNn−1(Ξ̄n,j) η

N
n−1(ξ̄n,j) η

N
n−1(Ξ̄n,k) ηNn−1(ξ̄n,k)

]

=: T1 + T2 . (45)

The following zero-expectations obtained for terms involved in T1, T2 are a direct conse-

quence of the fact that ξ̄n,j(x) only depends on xj and has zero expectation under ηn−1, and

that Ξ̄n,j(x) only depends on xj , xd+1 through the product form in (44) with the xd+1-term

having zero-expectation; critically, recall that particles xin−1,j are independent over both

i, j. Focusing on the T1-term and the expectation E
[
{ηNn−1(Ξ̄n,j)}2 {ηNn−1(ξ̄n,j)}2

]
we note

that all 4-way product terms arising after replacing ηNn−1 with its sum-expression will have

expectation 0, except for the ones that involve cross-products of the form {Ξ̄n,j(xin−1)}2 ×

{ξ̄n,j(xi
′

n−1)}2, thus:

T1 = 1
d

d∑
j=1

N2 · 1
N4 · O(N2) = O(1) . (46)

Then, moving on to the T2-term, notice that all 4-way products in the expectation term

E
[
ηNn−1(Ξ̄n,j) η

N
n−1(ξ̄n,j) η

N
n−1(Ξ̄n,k) ηNn−1(ξ̄n,k)

]
have expectation 0, except for the products

involving the same particles Ξ̄n,j(x
i
n−1) ξ̄n,j(x

i
n−1) Ξ̄n,k(xin−1) ξ̄n,k(xin−1). Thus, we have

that:

T2 = 1
d

d∑
j,k=1,j 6=k

N2 · 1
N4 · O(N) = O( dN )

Thus, overall we have that:

‖B̃1(N)‖2 = O(
√
d
N ) +O( d

N3/2 ) . (47)

Results (46), (47), used within (45) complete the proof.
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