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Abstract: For a Markov transition kernel P and a probability distribution
µ on nonnegative integers, a time-sampled Markov chain evolves according
to the transition kernel Pµ =

∑
k µ(k)Pk. In this note we obtain CLT

conditions for time-sampled Markov chains and derive a spectral formula
for the asymptotic variance. Using these results we compare efficiency of
Barker’s and Metropolis algorithms in terms of asymptotic variance.
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1. Introduction

Let P be an ergodic transition kernel of a Markov chain (Xn)n≥0 with lim-
iting distribution π on (X ,B(X )) and let f : X → R be in L2(π). A typical
MCMC procedure for estimating I = πf :=

∫
X f(x)π(dx) would use În :=

1
n

∑n−1
i=0 f(Xi). Under appropriate assumptions on P and f a CLT holds for În,

i.e.

√
n(În − I) → N (0, σ2

f,P ), (1)

where the constant σ2
f,P < ∞ is called asymptotic variance and depends only

on f and P.
The following theorem from [KV86] is a fundamental result on conditions

that guarantee (1) for reversible Markov chains.
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Theorem 1.1 ([KV86]). For a reversible and ergodic Markov chain, and a
function f ∈ L2(π), if

V ar(f, P ) := lim
n→∞

nVarπ(În) < ∞, (2)

then (1) holds with

σ2
f,P = V ar(f, P ) =

∫
[−1,1]

1 + x

1− x
Ef,P (dx), (3)

where Ef,P is the spectral measure associated with f and P .

We refer to (2) as the Kipnis-Varadhan condition. Assuming that (2) holds
and P is reversible, in Section 2 we obtain conditions for the CLT and derive
a spectral formula for the asymptotic variance σ2

f,Pµ
of a time-sampled Markov

chain of the form

Pµ :=
∞∑
k=0

µ(k)P k, (4)

where µ is a probability distribution on the nonnegative integers. Time-sampled
Markov chains are of theoretical interest in the context of petite sets (cf. Chapter
5 of [MT93]), and also in the context of computational algorithms [Ros03a,
Ros03b].

Next we proceed to analyze efficiency of Barker’s algorithm [Bar65]. Barker’s
algorithm, similarly as Metropolis, uses an irreducible transition kernel Q to
draw proposals. A move form Xn = x to a proposal Yn+1 = y is then accepted
with probability

α(B)(x, y) =
π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
, (5)

where q(x, ·) is the transition density of Q(x, ·). It is well known that with the
same proposal kernel Q, the Metropolis acceptance ratio results in a smaller
asymptotic variance then Barker’s. In Section 3 we show that the asymptotic
variance of Barker’s algorithm is not bigger then, roughly speaking, two times
that of Metropolis. We also motivate our considerations by recent advances in
exact MCMC for diffusion models.

2. Time-sampled Markov chains

In this section we work under assumptions of Theorem 1.1 which imply that the
asymptotic variance σ2

f,P equals V ar(f, P ) defined in (2) and satisfies (3). For
other Markov chain CLT conditions we refer to [Jon04, RR04, MT93, B LL08,
RR08].

Theorem 2.1. Let P be a reversible and ergodic transition kernel with station-
ary measure π, and let f ∈ L2(π). Assume that the Kipnis-Varadhan condition
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(2) holds for f and P . For a probability distribution µ on nonnegative integers,
let the time-sampled kernel Pµ be defined by (4). Then, if any of the following
conditions hold

(i) µodd := µ({1, 3, 5, . . . }) > 0,
(ii) µ(0) < 1 and P is geometrically ergodic,

the CLT holds for f and Pµ, moreover

σ2
f,Pµ =

∫
[−1,1]

1 +Gµ(x)

1−Gµ(x)
Ef,P (dx) < ∞, (6)

where Gµ is the probability generating function of µ, i.e. Gµ(z) := EµzK , |z| ≤
1, K ∼ µ, and Ef,P is the spectral measure associated with f and P .

Remark 2.2. The condition µodd > 0 in the above result is necessary, which we
show below by means of a counterexample.

Proof. The proof is based on the functional analytic approach (see e.g. [KV86,
RR97]). Without loss of generality assume that πf = 0. A reversible transition
kernel P with invariant distribution π is a self-adjoint operator on L2

0(π) :=
{f ∈ L2(π) : πf = 0} with spectral radius bounded by 1. By the spectral
decomposition theorem for self adjoint operators, for each f ∈ L2

0(π) there
exists a finite positive measure Ef,P on [−1, 1], such that

〈f, Pnf〉 =

∫
[−1,1]

xnEf,P (dx),

for all integers n ≥ 0. Thus in particular

σ2
f = πf2 =

∫
[−1,1]

1Ef,P (dx) < ∞, (7)

and by [KV86] (c.f. also Theorem 4 of [HR07]) one obtains

σ2
f,P =

∫
[−1,1]

1 + x

1− x
Ef,P (dx) < ∞. (8)

Since Pnµ =
∑
k µ(k)P k, by the spectral mapping theorem [Con90], we have

〈f, Pnµ f〉 =

∫
[−1,1]

xnEf,Pµ(dx) =

∫
[−1,1]

(∑
k

µ(k)xk
)n
Ef,P (dx)

=

∫
[−1,1]

(
Gµ(x)

)n
Ef,P (dx),

and consequently, applying the same argument as [KV86, HR07], we obtain

σ2
f,Pµ =

∫
[−1,1]

1 + x

1− x
Ef,Pµ(dx)

=

∫
[−1,1]

1 +Gµ(x)

1−Gµ(x)
Ef,P (dx) =: ♣. (9)
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Now (9) gives the claimed formula but we need to prove (9) is finite: by [KV86]
finiteness of the integral in (9) implies a CLT for f and Pµ. Observe that

|G(x)| ≤ 1 for all x ∈ [−1, 1],

G(x) ≤ µ(0) + x(1− µ(0)) for x ≥ 0.

Moreover, if (i) holds, then

G(x) ≤
∑
k even

µ(k)xk ≤ 1− µodd for x ≤ 0,

hence we can write

♣ =

∫
[−1,0)

1 +Gµ(x)

1−Gµ(x)
Ef,P (dx) +

∫
[0,1]

1 +Gµ(x)

1−Gµ(x)
Ef,P (dx)

≤ 1

µodd

∫
[−1,0)

2Ef,P (dx) +
1

1− µ(0)

∫
[0,1]

2

1− x
Ef,P (dx). (10)

The first integral in (10) is finite by (7) and the second by (8) and we are done
with (i).

Next assume that (ii) holds. By S(P ) denote the spectrum of P and let
sP := sup{|λ| : λ ∈ S(P )} be the spectral radius. From [RR97] we know that
since P is reversible and geometrically ergodic, it has a spectral gap, i.e. sP < 1.
Hence for x ∈ [−sP , 0], we can write

Gµ ≤ µ(0) +
∑
k even

µ(k)xk ≤ µ(0) + sP (1− µ(0)).

Consequently

♣ =

∫
[−sP ,0)

1 +Gµ(x)

1−Gµ(x)
Ef,P (dx) +

∫
[0,sP ]

1 +Gµ(x)

1−Gµ(x)
Ef,P (dx)

≤ 1

1− µ(0)

∫
[−sP ,0)

2

1− sP
Ef,P (dx) +

1

1− µ(0)

∫
[0,sP ]

2

1− x
Ef,P (dx). (11)

The first integral in (11) is finite by (7) and the second by (8).

The most important special case of Theorem 2.1 is underlined and computed
explicitly in the next corollary.

Corollary 2.3. Let P be a reversible and ergodic transition kernel with station-
ary measure π, and assume that for f and P the CLT (1) holds. For ε ∈ (0, 1)
let the lazy version of P be defined as Pε := εId + (1 − ε)P. Then the CLT
holds for f and Pε and

σ2
f,Pε =

1

1− ε
σ2
f,P +

ε

1− ε
σ2
f . (12)
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Proof. We use Theorem 2.1 with µ(0) = ε, µ(1) = 1−ε. Hence Gµ = ε+(1−ε)x,
and consequently

σ2
f,Pε =

∫
[−1,1]

1 + ε+ (1− ε)x
1− ε− (1− ε)x

Ef,P (dx)

=

∫
[−1,1]

1

1− ε

(
1 + x

1− x
+ ε

)
Ef,P (dx)

=
1

1− ε

∫
[−1,1]

1 + x

1− x
Ef,P (dx) +

ε

1− ε

∫
[−1,1]

1Ef,P (dx)

=
1

1− ε
σ2
f,P +

ε

1− ε
σ2
f .

Efficiency of time sampled Markov chains can be compared using the following
corollary from Theorem 2.1.

Corollary 2.4. Let P and f be as in Theorem 2.1. If P is positive as an
operator on L2(π) and µ1 dominates stochastically µ2 (i.e. µ1 ≥st µ2), then Pµ1

dominates Pµ2
in the efficiency ordering, i.e. σ2

f,Pµ1
≤ σ2

f,Pµ2
.

Proof. If P is positive self-adjoint then suppEf,P ⊆ [0, 1]. Moreover

µ1 ≥st µ2 ⇒ Gµ1
(x) ≤ Gµ2

(x) for x ∈ [−1, 1].

The conclusion follows from (6).

In another direction of studying CLTs, the variance bounding property of
Markov chains has been introduced in [RR08] and is defined as follows. P is
variance bounding if there exists K < ∞ such that V ar(f, P ) ≤ KVarπ(f) for
all f. Here V ar(f, P ) is defined in (2) and Varπ(f) = πf2−(πf)2. We prove that
for time-sampled Markov chains the variance bounding property propagates the
same way the CLT does.

Theorem 2.5. Assume P is reversible and variance bounding. Then Pµ is
variance bounding if any of the following conditions hold

(i) µodd := µ({1, 3, 5, . . . }) > 0,
(ii) µ(0) < 1 and P is geometrically ergodic.

Proof. For any f such that Varπf < ∞, the Kipnis-Varadhan condition holds
due to variance bounding property of P and thus the assumptions of Theo-
rem 2.1 are met. Hence for every f ∈ L2(π) there is a CLT for f and Pµ.
Therefore Pµ is variance bounding by Theorem 7 of [RR08].

The next example shows that in case of Markov chains that are not geomet-
rically ergodic, the condition µodd > 0 is necessary.

Example 2.6. We set f(x) = x and give an example of an ergodic and reversible
transition kernel P on X = [−1, 1], and such that there is a CLT for P and f

CRiSM Paper No. 11-04, www.warwick.ac.uk/go/crism
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but not for P 2 and f. We shall rely on Theorem 4.1 of [B LL08] that provides if
and only if conditions for Markov chains CLTs in terms of regenerations. It will
be apparent that the condition µodd > 0 in Theorem 2.1 is necessary.

Set s(x) :=
√

1− |x|, let U(·) be the uniform distribution on [−1, 1], and let
the kernel P be of the form

P (x, ·) = (1− s(x))δ−x(·) + s(x)U(·), hence (13)

P 2(x, ·) = (1− s(x))2δx(·) + (2s(x)− s(x)2)U(·). (14)

To find the stationary distribution of P (and also P 2), we verify reversibility
with π(x) ∝ 1/s(x).

π(dx)P (x,dy) ∝ 1

s(x)
δ−x(y) + δ−x(y) + U(dy)

=
1

s(y)
δ−y(x) + δ−y(x) + U(dx) ∝ π(dy)P (y,dx).

Hence π(x) is a reflected Beta(1, 12 ). Clearly π(f2) <∞.
Recall now the split chain construction [Num78, AN78] of the bivariate

Markov chain {Xn,Γn} on {0, 1}×X = {0, 1}×[0, 1]. If (Xn)n≥0 evolves accord-
ing to P defined in (14), we have the following transition rule from {Xn−1,Γn−1}
to {Xn,Γn} for the split chain.

P̌(Xn ∈ ·|Γn−1 = 1, Xn−1 = x) = U(·),
P̌(Xn ∈ ·|Γn−1 = 0, Xn−1 = x) = δ−x(·),

P̌(Γn = 1|Γn−1, Xn = x) = s(x),

P̌(Γn = 0|Γn−1, Xn = x) = 1− s(x).

The notation P̌ above indicates that we consider the extended probability space
for (Xn,Γn), not the original one of Xn. The appropriate modification of the
above holds if the dynamics of Xn is P 2, namely

P̌(Xn ∈ ·|Γn−1 = 1, Xn−1 = x) = U(·),
P̌(Xn ∈ ·|Γn−1 = 0, Xn−1 = x) = δx(·),

P̌(Γn = 1|Γn−1, Xn = x) = 2s(x)− s2(x),

P̌(Γn = 0|Γn−1, Xn = x) = (1− s(x))2.

We refer to to the original papers for more details on the split chain construction
and to [B LL08, RR04] for central limit theorems in this context. Denote

τ := min{k ≥ 0 : Γk = 1}. (15)

By Theorem 4.1 of [B LL08], the CLT for P and f holds if and only if the
following expression for the asymptotic variance is finite.

σ2
f,P =

∫
[−1,1]

s(x)π(x)dx ĚU
( τ∑
k=0

f(Xn)
)2
, (16)
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where (Xn,Γn) follow the dynamics of P. Respectively, the CLT for P 2 and f
holds in our setting, if and only if

σ2
f,P 2 =

∫
[−1,1]

(2s(x)− s2(x))π(x)dx ĚU
( τ∑
k=0

f(Xn)
)2

(17)

is finite, where (Xn,Γn) follow the dynamics of P 2.
Now observe that if (Xn)n≥0 evolves according to P, then (

∑τ
k=0 f(Xn))2

equals 0 if τ is odd, or (
∑τ
k=0 f(Xn))2 = X2

0 , if τ is even. Consequently (16) is
finite. However, if (Xn)n≥0 evolves according to P 2, then (

∑τ
k=0 f(Xn))2 = (τ+

1)2X2
0 and the distribution of τ is geometric with parameter 2s(X0)− s2(X0) =

1− (1− s(x))2. Therefore we compute σ2
f,P 2 in (17) as

σ2
f,P 2 =

∫
[−1,1]

(2s(x)− s2(x))π(x)dx

∫
[−1,1]

2−
(
1−

(
1− s(x)

)2)
2
(
1− (1− s(x))2

)2 x2dx

= C

∫
[−1,1]

(
1 + (1− s(x))2

)
x2

2
(
1− |x| − 2

√
1− |x|

)2 dx

≥ C

∫
[−1,1]

x2

8(1− |x|)
dx = ∞.

3. Barker’s algorithm

When assessing efficiency of Markov chain Monte Carlo algorithms, the asymp-
totic variance criterion is one of natural choices. Peskun ordering [Pes73] (see
also [Tie98, MG99]) provides a tool to compare two reversible transition ker-
nels P1, P2 with the same limiting distribution π and is defined as follows.
P1 � P2 ⇐⇒ for π−almost every x ∈ X and all A ∈ B(X ) holds P1(x,A −
{x}) ≥ P2(x,A− {x}). If P1 � P2 then σ2

f,P1
≤ σ2

f,P2
for every f ∈ L2(π).

Consider now a class of algorithms where the transition kernel P is defined
by applying an irreducible proposal kernel Q and an acceptance rule α, i.e. given
Xn = x, the value of Xn+1 is a result of performing the following two steps.

1. Draw a proposal y ∼ Q(x, ·),
2. Set Xn+1 := y with probability α(x, y) and Xn+1 = x otherwise,

where α(x, y) is such that the resulting kernel P is reversible with stationary
distribution π. It follows [Pes73, Tie98] that for a given proposal kernel Q the
standard Metropolis-Hastings [MRR+53, Has70] acceptance rule

α(MH)(x, y) = min
{

1,
π(y)q(y, x)

π(x)q(x, y)

}
(18)

yields a transition kernel P (MH) that is maximal with respect to Peskun order-
ing and thus minimal with respect to asymptotic variance. In particular, the
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Barker’s algorithm [Bar65] that uses acceptance rule

α(B)(x, y) =
π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
(19)

is inferior to Metropolis-Hastings when the asymptotic variance is considered. In
the above notation we assume that all the involved distributions have common
denominating measure and q(x, ·) are transition densities of Q. See [Tie98] for
a more general statement and discussion.

Exact Algorithms introduced in [BPRF06, BR05, BPR06, BPR08] allow for
inference in diffusion models without Euler discretization error. In recent ad-
vances in Exact MCMC inference for complex diffusion models a particular
setting is reoccurring, where the Metropolis-Hastings acceptance step requires a
specific Bernoulli Factory and is not possible to execute. However, in this diffu-
sion context the Barker’s algorithm (19) is feasible, as well as the ’lazy’ version
of the Metropolis-Hastings kernel

P (MH)
ε := εId+ (1− ε)P (MH). (20)

We refer to [GR L11,  LPR11,  LKPR11] for the background on exact MCMC
inference for diffusions and the Bernoulli Factory problem. This motivates us
to investigate performance of these alternatives in comparison to the standard
Metropolis-Hastings.

Theorem 3.1. Let P (B) denote the transition kernel of the Barker’s algorithm

and let P (MH) and P
(MH)
ε be as defined in (20). If the CLT (1) holds for f and

P (MH), then it holds also for

(i) f and P
(MH)
ε with

σ2

f,P
(MH)
ε

=
1

1− ε
σ2
f,P (MH) +

ε

1− ε
σ2
f . (21)

(ii) f and P (B) with

σ2
f,P (MH) ≤ σ2

f,P (B) ≤ σ2

f,P
(MH)

1/2

= 2σ2
f,P (MH) + σ2

f . (22)

Proof. The first claim (i) is a restatement of Corollary 2.3 for Metropolis-

Hastings chains. To obtain the second claim (ii), note that P
(MH)
1/2 can be viewed

as an algorithm that uses proposals from Q and acceptance rule

α(x, y) = min
{1

2
,
π(y)q(y, x)

2π(x)q(x, y)

}
.

Now since

min
{

1,
π(y)q(y, x)

π(x)q(x, y)

}
≥ π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
≥ min

{1

2
,
π(y)q(y, x)

2π(x)q(x, y)

}
,

the result follows from Peskun ordering and Corollary 2.3.
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