81 research outputs found

    Modulation of angiogenesis by inflammatory markers and the role of matrix metalloproteinases in an endothelial cell/fibroblast co-culture system.

    Get PDF
    Increased levels of inflammatory markers such as tumour necrosis factor-α (TNFα) and interleukin- 6 (IL-6) have been associated with formation of new blood vessels, or angiogenesis, and linked to chronic inflammation in obesity. This study aimed to establish and use a versatile co-culture cell system to further investigate the role of TNFα and IL-6 in modulating (i) tubule formation and (ii) cell-cell interactions via matrix metalloproteinase (MMP) enzyme activity and secretion of vascular endothelial growth factor (VEGF), E-selectin and prostaglandin E2 (PGE2). Co-cultures of human endothelial cells and fibroblasts were incubated with TNFα (10 ng/mL) or IL-6 (10 ng/mL) added 2 and/or 7 days after co-culture establishment. Cell viability by enzymatic conversion was determined by MTT assay; tubule formation was detected by immunostaining; VEGF, E-selectin and PGE2 expression by ELISA analysis and MMP enzyme activity by gel zymography. Treatmentspecific and time dependent differences in tubule formation were observed: IL-6 significantly increased tubule formation, whilst TNFα significantly inhibited tubule formation. Treatment-specific differences in levels of MMP activities which correlate to tubule formation were also observed. This study showed inflammatory markers, typically associated with obese status, affect tubule formation differently in a heterogeneous cell environment similar to that observed in vivo

    Adipocytokines and their relationship to endometrial cancer risk: a systematic review and meta-analysis.

    Get PDF
    Objective:- To investigate the association between circulating levels of adipocytokines (adiponectin, leptin, tumour necrosis factor alpha (TNFα), interleukin 6 (IL-6)) and growth factors (insulin-like growth factor I (IGF-I) and II (IGF-II)), and the risk of endometrial cancer. Methods:- Cochrane, CINAHL, Embase, Medline and Web of Science were searched for English-language manuscripts published between January 2000 and August 2018 using the following string of words: cancer and endometrial and (obesity or BMI) and (adiponectin or TNF* or IGF-I or IGF-II or IL-6 or leptin). Results:- Twenty articles were included in this meta-analysis, which corresponded to 18 studies involving 2921 endometrial carcinoma cases and 5302 controls. Fourteen articles reported circulating levels for adiponectin, seven for leptin, three for TNFα, three for IL-6 and one for IGF- I. No article reported values for IGF- II. Patients with circulating adiponectin levels in the highest tertile had decreased endometrial cancer risk compared to women with levels in the lowest tertile, (summary of odds ratio (SOR) 0.51, 95% CI: 0.38-0.69, p[less than]0.00001). Women with circulating leptin concentrations in the highest tertile had increased endometrial cancer risk compared to women with concentrations in the lowest tertile (SOR 2.19, 95% CI: 1.45-3.30, p=0.0002). There was no difference in cancer risk between participants with the highest TNFα and IL-6 levels compared to the lowest levels (SOR 1.27, 95% CI: 0.88-1.83, p=0.20 and SOR 1.20, 95% CI: 0.89-1.63, p=0.23, respectively). Conclusions:- Endometrial cancer risk is inversely affected by adiponectin and leptin levels. There appears to be no relationship between TNF-α and IL- 6 and the overall risk of endometrial cancer

    Novel bisnaphthalimidopropyl (BNIPs) derivatives as anticancer compounds targeting DNA in human breast cancer cells.

    Get PDF
    Bisnaphthalimidopropyl (BNIP) derivatives are a family of compounds that exert anti-cancer activities in vitro and, according to previous studies, variations in the linker sequence have increased their DNA binding and cytotoxic activities. By modifying the linker sequence of bisnaphthalimidopropyl diaminodicyclohexylmethane (BNIPDaCHM), a previously synthesised BNIP derivative with anti-cancer properties, three novel BNIP derivatives were designed. Bisnaphthalimidopropyl-piperidylpropane (BNIPPiProp), a structural isomer of BNIPDaCHM, bisnaphthalimidopropyl ethylenedipiperidine dihydrobromide (BNIPPiEth), an isoform of BNIPDaCHM with a shorter linker chain, and (trans(trans))-bisnaphthalimidopropyl diaminodicyclohexylmethane (trans,trans-BNIPDaCHM), a stereoisomer of BNIPDaCHM, were successfully synthesised (72.3-29.5% yield) and characterised by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Competitive displacement of ethidium bromide (EtBr) and UV binding studies were used to study the interactions of BNIP derivatives with Calf Thymus DNA. The cytotoxicity of these derivatives was assessed against human breast cancer MDA-MB-231 and SKBR-3 cells by MTT assay. Propidium iodide (PI) flow cytometry was conducted in order to evaluate the cellular DNA content in both breast cancer cell lines before and after treatment with BNIPs. The results showed that all novel BNIPs exhibit strong DNA binding properties in vitro, and strong cytotoxicity, with IC50 values in the range of 0.2-3.3 μM after 24 hours drug treatment. Two of the novel BNIP derivatives, BNIPPiEth and trans,trans-BNIPDaCHM, exhibited greater cytotoxicity against the two breast cancer cell lines studied, compared to BNIPDaCHM. By synthesising enantiopures and reducing the length of the linker sequence, the cytotoxicity of the BNIP derivatives was significantly improved compared to BNIPDaCHM, while maintaining DNA binding and bis-intercalating properties. In addition, cell cycle studies indicated that trans,trans-BNIPDaCHM, the most cytotoxic BNIP derivative, induced sub-G1 cell cycle arrest, indicative of apoptotic cell death. Based on these findings, further investigation is under way to assess the potential efficacy of trans,trans-BNIPDaCHM and BNIPPiEth in treating human breast cancer

    Bisnaphthalimidopropyl diaminodicyclohexylmethane induces DNA damage and repair instability in triple negative breast cancer cells via p21 expression.

    Get PDF
    Bisnaphthalimidopropyl diaminodicyclohexylmethane (BNIPDaCHM) bisintercalates to DNA and is a potential anti-cancer therapeutic. In an attempt to elucidate the mechanism(s) underlying the potential of BNIPDaCHM; earlier work was extended to investigate its effect on DNA damage and repair as well as cell cycle modulation, in a triple negative breast cancer (TNBC) cell line in vitro. BNIPDaCHM significantly decreased cell viability in a concentration (≥5 μM) and time (≥24 h) dependent manner. The mechanism of this growth inhibition involved alterations to cell cycle progression, an increase in the sub-G1 population and changes to plasma membrane integrity/permeability observed by flow cytometry and fluorescence microscopy with acridine orange/ethidium bromide staining. Using single cell gel electrophoresis (Comet assay) and fluorescence microscopy to detect γ-H2AX-foci expression; it was found that after 4 h, ≥ 0.1 μM BNIPDaCHM treatment-induced significant DNA double strand breaks (DSBs). Moreover, exposure to a non-genotoxic concentration of BNIPDaCHM induced a significant decrease in the repair of oxidative DNA strand breaks induced by hydrogen peroxide. Also, BNIPDaCHM-treatment induced a significant time dependent increase in p21Waf/Cip1 mRNA expression but, did not alter p53 mRNA expression. In conclusion, BNIPDaCHM treatment in MDA-MB-231 cells was associated with a significant induction of DNA DSBs and inhibition of DNA repair at non-genotoxic concentrations via p53-independent expression of p21Waf1/Cip1. The latter may be a consequence of novel interactions between BNIPDaCHM and MDA-MB-231 cells which adds to the spectrum of therapeutically relevant activities that may be exploited in the future design and development of naphthalimide-based therapeutics

    Fast character modeling with sketch-based PDE surfaces

    Get PDF
    © 2020, The Author(s). Virtual characters are 3D geometric models of characters. They have a lot of applications in multimedia. In this paper, we propose a new physics-based deformation method and efficient character modelling framework for creation of detailed 3D virtual character models. Our proposed physics-based deformation method uses PDE surfaces. Here PDE is the abbreviation of Partial Differential Equation, and PDE surfaces are defined as sculpting force-driven shape representations of interpolation surfaces. Interpolation surfaces are obtained by interpolating key cross-section profile curves and the sculpting force-driven shape representation uses an analytical solution to a vector-valued partial differential equation involving sculpting forces to quickly obtain deformed shapes. Our proposed character modelling framework consists of global modeling and local modeling. The global modeling is also called model building, which is a process of creating a whole character model quickly with sketch-guided and template-based modeling techniques. The local modeling produces local details efficiently to improve the realism of the created character model with four shape manipulation techniques. The sketch-guided global modeling generates a character model from three different levels of sketched profile curves called primary, secondary and key cross-section curves in three orthographic views. The template-based global modeling obtains a new character model by deforming a template model to match the three different levels of profile curves. Four shape manipulation techniques for local modeling are investigated and integrated into the new modelling framework. They include: partial differential equation-based shape manipulation, generalized elliptic curve-driven shape manipulation, sketch assisted shape manipulation, and template-based shape manipulation. These new local modeling techniques have both global and local shape control functions and are efficient in local shape manipulation. The final character models are represented with a collection of surfaces, which are modeled with two types of geometric entities: generalized elliptic curves (GECs) and partial differential equation-based surfaces. Our experiments indicate that the proposed modeling approach can build detailed and realistic character models easily and quickly

    Aerobic interval exercise improves parameters of Non Alcoholic Fatty Liver Disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    Get PDF
    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P < 0.0001) and suffered significant alterations in plasma lipid profile, area under the curve after oral glucose overload (P < 0.0001), liver histology and functionality, and antioxidant status. The AIT protocol reduced the severity of alterations related to glucose and lipid metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS

    Association between Polymorphisms in Glutathione Peroxidase and Selenoprotein P Genes, Glutathione Peroxidase Activity, HRT Use and Breast Cancer Risk.

    Get PDF
    Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this report, a study population including 975 Danish cases and 975 controls matched for age and hormone replacement therapy (HRT) use was genotyped for five functional single nucleotide polymorphisms (SNPs) in SEPP1, GPX1, GPX4 and the antioxidant enzyme SOD2 genes. The influence of genetic polymorphisms on breast cancer risk was assessed using conditional logistic regression. Additionally pre-diagnosis erythrocyte GPx (eGPx) activity was measured in a sub-group of the population. A 60% reduction in risk of developing overall BC and ductal BC was observed in women who were homozygous Thr carriers for SEPP1 rs3877899. Additionally, Leu carriers for GPX1 Pro198Leu polymorphism (rs1050450) were at ∼2 fold increased risk of developing a non-ductal BC. Pre-diagnosis eGPx activity was found to depend on genotype for rs713041 (GPX4), rs3877899 (SEPP1), and rs1050450 (GPX1) and on HRT use. Moreover, depending on genotype and HRT use, eGPx activity was significantly lower in women who developed BC later in life compared with controls. Furthermore, GPx1 protein levels increased in human breast adenocarcinoma MCF7 cells exposed to β-estradiol and sodium selenite.In conclusion, our data provide evidence that SNPs in SEPP1 and GPX1 modulate risk of BC and that eGPx activity is modified by SNPs in SEPP1, GPX4 and GPX1 and by estrogens. Our data thus suggest a role of selenoproteins in BC development

    High prevalence of germline STK11 mutations in Hungarian Peutz-Jeghers Syndrome patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peutz-Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease characterized by gastrointestinal hamartomatous polyposis and mucocutaneous pigmentation. The genetic predisposition for PJS has been shown to be associated with germline mutations in the <it>STK11</it>/<it>LKB1 </it>tumor suppressor gene. The aim of the present study was to characterize Hungarian PJS patients with respect to germline mutation in <it>STK11</it>/<it>LKB1 </it>and their association to disease phenotype.</p> <p>Methods</p> <p>Mutation screening of 21 patients from 13 PJS families were performed using direct DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). Comparative semi-quantitative sequencing was applied to investigate the mRNA-level effects of nonsense and splice-affecting mutations.</p> <p>Results</p> <p>Thirteen different pathogenic mutations in <it>STK11</it>, including a high frequency of large genomic deletions (38%, 5/13), were identified in the 13 unrelated families studied. One of these deletions also affects two neighboring genes (<it>SBNO2 </it>and <it>GPX4</it>), located upstream of <it>STK11</it>, with a possible modifier effect. The majority of the point mutations (88%, 7/8) can be considered novel. Quantification of the <it>STK11 </it>transcript at the mRNA-level revealed that the expression of alleles carrying a nonsense or frameshift mutation was reduced to 30-70% of that of the wild type allele. Mutations affecting splice-sites around exon 2 displayed an mRNA processing pattern indicative of co-regulated splicing of exons 2 and 3.</p> <p>Conclusions</p> <p>A combination of sensitive techniques may assure a high (100%) <it>STK11 </it>mutation detection frequency in PJS families. Characterization of mutations at mRNA level may give a deeper insight into the molecular consequences of the pathogenic mutations than predictions made solely at the genomic level.</p

    Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression

    Get PDF
    Selenium, an essential trace element, is incorporated into selenoproteins as selenocysteine (Sec), the 21st amino acid. In order to synthesize selenoproteins, a translational reprogramming event must occur since Sec is encoded by the UGA stop codon. In mammals, the recoding of UGA as Sec depends on the selenocysteine insertion sequence (SECIS) element, a stem-loop structure in the 3′ untranslated region of the transcript. The SECIS acts as a platform for RNA-binding proteins, which mediate or regulate the recoding mechanism. Using UV crosslinking, we identified a 110 kDa protein, which binds with high affinity to SECIS elements from a subset of selenoprotein mRNAs. The crosslinking activity was purified by RNA affinity chromatography and identified as nucleolin by mass spectrometry analysis. In vitro binding assays showed that purified nucleolin discriminates among SECIS elements in the absence of other factors. Based on siRNA experiments, nucleolin is required for the optimal expression of certain selenoproteins. There was a good correlation between the affinity of nucleolin for a SECIS and its effect on selenoprotein expression. As selenoprotein transcript levels and localization did not change in siRNA-treated cells, our results suggest that nucleolin selectively enhances the expression of a subset of selenoproteins at the translational level
    corecore