126 research outputs found

    Energy harvesting from transverse galloping

    Get PDF
    Some elastic bluff bodies under the action of a fluid flow can experience transverse galloping and lose stability if the flow velocity exceeds a critical value. For flow velocities higher than this critical value, there is an energy transfer from the flow to the body and the body develops an oscillatory motion. Usually, it is considered as an undesirable effect for civil or marine structures but here we will show that if the vibration is substantial, it can be used to extract useful energy from the surrounding flow. This paper explores analytically the potential use of transverse galloping in order to obtain energy. To this end, transverse galloping is described by a one-degree-of-freedom model where fluid forces obey the quasi-steady hypothesis. The influence of cross-section geometry and mechanical properties in the energy conversion factor is investigated

    Optimal electromagnetic energy extraction from transverse galloping

    Get PDF
    A fully coupled electro-fluid-elastic model for electromagnetic energy harvesting from Transverse Galloping is presented here. The model considers a one degree-of-freedom galloping oscillator where fluid forces are described resorting to quasi-steady conditions; the electromagnetic generator is modelled by an equivalent electrical circuit where power is dissipated at an electrical load resistance; the galloping oscillator and the electromagnetic model are coupled appropriately. Two different levels of simplification have been made depending on the comparison between the characteristic electrical and mechanical timescales. The effect of the electrical resistance load on the energy harvested is studied theoretically. For fixed geometry and mechanical parameters, it has been found that there exists an optimal electrical resistance load for each reduced velocity. On the practical side, this result can be helpful to design tracking-point strategies to maximize energy harvesting for variable flow velocity conditions

    Enhanced mechanical energy extraction from transverse galloping using a dual mass system

    Full text link
    This paper offers a theoretical study of energy extraction through transverse galloping using a dual-mass system. To this end, a two-degree-of-freedom model is developed where fluid forces on the galloping body are described resorting to quasi-steady hypothesis; the model is solved approximately by using the Harmonic Balance Method. Three possible configurations of the dual-mass system have been analyzed. Two of them show an improvement in the efficiency of energy extraction with respect to that of the single mass configuration when the mechanical properties of the dual-mass system are appropriately chosen. In addition, the dual-mass system promotes a broadening of the values of the incident flow velocities at which the efficiency is kept high

    Hysteresis phenomena in transverse galloping of triangular cross-section bodies

    Get PDF
    Transverse galloping is a type of aeroelastic instability characterised by large amplitude, low frequency oscillation of a structure in the direction normal to the mean wind direction. It normally appears in bodies with small stiffness and structural damping, provided the incident flow velocity is high enough. In the simplest approach transverse galloping can be considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which in turn can be described by using a quasi-steady description. In this frame it has been demonstrated that hysteresis phenomena in transverse galloping is related to the existence of inflection points in the curve giving the dependence with the angle of attack of the aerodynamic coefficient normal to the incident flow. Aiming at experimentally checking such a relationship between these inflection points and hysteresis, wind tunnel experiments have been conducted. Experiments have been restricted to isosceles triangular cross-section bodies, whose galloping behaviour is well documented. Experimental results show that, according to theoretical predictions, hysteresis takes place at the angles of attack where there are inflection points in the lift coefficient curve, provided that the body is prone to gallop at these angles of attack

    Plataforma basada en microprocesador para el aprendizaje de tecnologías inalámbricas RFID, NFC y Bluetooth

    Get PDF
    El Congreso TAEE 2010, organizado por la Universidad Nacional de Educación a Distancia (UNED) y la Universidad Politécnica de Madrid (UPM), se ha celebrado entre el 13 y el 15 de abril de 2010.En este trabajo se presenta el desarrollo de una plataforma, basada en un microprocesador de bajo coste, que pretende acercar a los alumnos al uso y desarrollo de aplicaciones basadas en las tecnologías inalámbricas RFID y Bluetooth. Mientras que el estándar NFC representa el ejemplo más claro del elevado crecimiento que están experimentado recientemente los dispositivos RFID, Bluetooth personifica el grado de desarrollo y uso que pueden alcanzar estas tecnologías inalámbricas gracias a los dispositivos electrónicos de uso cotidiano como son teléfonos mó viles, PDAs y PCs portátiles. Para mostrar a los alumnos el interés de ambas tecnologías, se ha desarrollado un sistema simple para la realización de trabajos prácticos en una asignatura denominada “Laboratorio de Instrumentación Electrónica”, adscrita a la titulación de Ingeniería de telecomunicaciones en la Escuela Superior de Ingenieros de la Universidad de Sevill

    Obstructive sleep apnea severity is associated with left ventricular mass independent of other cardiovascular risk factors in morbid obesity

    Get PDF
    OBJECTIVE: To evaluate the relation between obstructive sleep apnea (OSA) and left ventricular mass (LVM) in morbid obesity and the influence of gender, menopausal status, anthropometry, body composition, hypertension, and other cardiovascular risk factors in this relationship. DESIGN: Cross-sectional descriptive study. METHODS: Polysomnographic and echocardiographic studies were performed in a cohort of 242 patients (86 men, 100 premenopausal (PreM) and 56 postmenopausal (PostM) women), with grade II obesity and above (BMI: 43.7 ± 0.4 kg/m(2)) to investigate OSA and LVM respectively. Anthropometry, body composition, glucose tolerance, and blood pressure were also recorded. RESULTS: OSA to different degrees was diagnosed in 76.2% of the patients (n: 166), its prevalence being 90.9% (n: 70) for men, and 76% (n: 38) and 63.8% (n: 58) for PostM and PreM women, respectively (p < 0.01). LVM excess was greatest for PostM women (90.2%), followed by men (81.9%) and PreM females (69.6%) (p < 0.01). LVM values increased in accordance to OSA severity (absence, 193.7 ± 6.9 g; mild, 192.6 ± 7.8 g; moderate, 240.5 ± 12.5 g; severe, 273.6 ± 14.6 g; p < 0.01). LVM magnitude correlated with the menopausal state, age, central adiposity, hypertension (HT), type 2 diabetes (DM), desaturation index (DI), and apnea-hypopnea index (AHI) (r = 0.41; p < 0.01). The relationship between LVM and AHI persisted in the multivariate analysis (β = 0.25; p < 0.05) after adjusting for age, gender, menopausal state, BMI, waist circumference, neck circumference, DI, fasting plasma glucose, DM, and HT. But if tobacco habits are included, the statistical difference disappears (β = 0.22; p = 0.06). CONCLUSIONS: Morbid obesity is frequently associated with abnormal LVM, particularly in patients with OSA; this association is independent of HT, BMI, body composition, and other clinical factors, supporting a direct role of OSA on LVM in morbid obesity. This suggests that OSA and LVM might be taken as predictors of the cardiovascular risk in these patients. KEYWORDS: Sleep apnea; apnea-hypopnea index; left ventricular mass; morbid obesit

    Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment

    Get PDF
    The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium β\beta-decay endpoint region with a sensitivity on mνm_\nu of 0.2\,eV/c2^2 (90% CL). For this purpose, the β\beta-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6\,keV. A dominant systematic effect of the response of the experimental setup is the energy loss of β\beta-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the \linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T2_2 gas mixture at 30\,K, as used in the first KATRIN neutrino mass analyses, as well as a D2_2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of σ(mν2)<102eV2\sigma(m_\nu^2)<10^{-2}\,\mathrm{eV}^2 [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level.Comment: 12 figures, 18 pages; to be submitted to EPJ

    Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

    Get PDF
    We present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76×106 tritium β-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E0=18.57  keV. We consider the 3ν+1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m24≲1600  eV2 and active-to-sterile mixing |Ue4|2≳6×10−3. As no sterile-neutrino signal was observed, we provide improved exclusion contours on m24 and |Ue4|2 at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Δm241 solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Δm241 are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Δm241 through a robust spectral shape analysis

    New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs

    Full text link
    We report on the direct cosmic relic neutrino background search from the first two science runs of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11) at a 90% (95%) confidence level. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint accounting for relic neutrino captures in the Tritium source reveals no significant overdensity. This work improves the results obtained by the previous kinematic neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by relying on updated operational conditions.Comment: 7 pages, 7 figure
    corecore