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A B S T R A C T 

A fully coupled electro-fluid-elastic model for electromagnetic energy harvesting from 
Transverse Galloping is presented here. The model considers a one degree-of-freedom 
galloping oscillator where fluid forces are described resorting to quasi-steady conditions; 
the electromagnetic generator is modelled by an equivalent electrical circuit where power 
is dissipated at an electrical load resistance; the galloping oscillator and the electro­
magnetic model are coupled appropriately. Two different levels of simplification have 
been made depending on the comparison between the characteristic electrical and 
mechanical timescales. The effect of the electrical resistance load on the energy harvested 
is studied theoretically. For fixed geometry and mechanical parameters, it has been found 
that there exists an optimal electrical resistance load for each reduced velocity. On the 
practical side, this result can be helpful to design tracking-point strategies to maximize 
energy harvesting for variable flow velocity conditions. 

1. Introduction 

In recent years, Flow-Induced Vibrations like Vortex-induced Vibrations (VIV), Transverse Galloping (TG) oscillations or 
Flutter have been considered as a new mean to harvest energy from fluid flows (Bernitsas et al., 2008; Barrero-Gil et al., 
2010, 2012; Sanchez-Sanz et al., 2009; Grouthier et al., 2013; Abdelkefi et al., 2013; Doare and Michelin, 2011; Allen and 
Smits, 2001, to name only a few). The basic idea is to take advantage of these phenomena to convert part of the kinetic 
energy of the flow into oscillatory mechanical energy of the elastic body; thereafter, the mechanical energy of the body may 
be converted into electrical energy by electromagnetic, piezoelectric, or electrostatic means. 

TG potential for energy harvesting has been recently investigated theoretically, numerically, and experimentally by 
Barrero-Gil et al. (2010), Abdelkefi and co-workers (2012, 2013), Sirohi and Mahadik (2011), or Zhao et al. (2012). Briefly 
outlined, it can be said that TG is a fluid-elastic instability that appears in some elastic bluff bodies when the velocity of the 
incident flow exceeds a critical value. Then, a small transverse displacement of the body induces an angle of attack relative 
to the incoming flow and a fluid force appears in the direction of the displacement in such a way that energy is pumped 
from the current to the body. Oscillatory motion (transverse to the flow) develops with an increasing amplitude until the 
energy dissipated per cycle by mechanical damping balances the energy input per cycle from the flow. If the geometry of the 
body and the elastic properties are appropriate, the instability may appear at low flow velocities and with large excitation 
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amplitudes, making TG a very promising way to harvest energy successfully. For an authoritative introduction to TG 
phenomenology and modelling, the reader is referred to Parkinson (1989), or the books by Blevins (1990), Naudascher and 
Rockwell (1994), or Pai'doussis et al. (2011). 

Barrero-Gil et al. (2010) developed a theoretical model to study TG potential for energy harvesting. They considered a 
one degree of freedom model to describe galloping oscillations and a quasi-steady approximation to describe TG fluid forces. 
They found analytically the dependence of the energy transferred from the flow to the galloping body as a function of the 
main governing parameters, namely the mass ratio (i.e. the ratio of the mean density of the galloping body with respect to 
the density of the surrounding flow), the mechanical damping, the fluid flow velocity, and the geometry of the body. For the 
sake of simplicity, they just considered a generic viscous damper to dissipate the energy pumped from the flow. Here, a 
forward step is presented in order to model the TG dynamics when an electromagnetic generator is used to produce 
electrical current which is dissipated at a generic electrical load resistance. To this end, the model presented at Barrero-Gil 
et al. (2010) is now coupled with a mathematical model of the electromagnetic generator. 

As will be shown in detail later, the electrical generator model may be simplified to a large extent, allowing an analytical 
solution, if the characteristic electrical timescale of the electromagnet generator TE is much shorter than the characteristic 
timescale of galloping oscillations TN (TE < TN). However, a perturbation approach has also been developed in order to gain 
deeper understanding of the dynamics when (TE/TN) < 1 and the inductance of the electromagnetic generator plays a role. 
In both cases, the effect of the electrical resistance load on the energy harvested is studied theoretically. For fixed geometry 
of the galloping body and mechanical parameters, it has been found that there exists an optimal electrical resistance load 
that maximizes the energy harvested for each flow velocity. From the practical side, this result can be helpful when 
designing some tracking-point strategy to maximize energy harvesting for changing flow velocity conditions. 

First of all, in Section 2, an electro-fluid-elastic model is introduced to describe the coupling between the galloping body 
and the electromagnetic generator dynamics. Section 3.1 presents and discusses analytical results for the most simplified 
situation (TE <̂  TN), whereas Section 3.2 is devoted to studying the case when the disparity of electrical and mechanical 
timescales is not so large but (TE/TN)<\. In this case, a perturbation approach is introduced to make an analytical 
treatment. Finally, Section 4 presents some concluding remarks. 

2. Mathematical model 

Let us consider a simplified dynamical system which consists of a spring-mounted prismatic body, prone to galloping, in 
an incoming flow. The assembly can be better understood in Fig. 1(a). As it can be seen, the system is composed of a viscous 
parasite damper, with constant damping per unit length c, a linear spring, with constant stiffness per unit length fe, and the 
electromagnetic generator used as energy harvester, where the magnet is linked to the prism, so it oscillates relative to the 
coil producing electricity which is dissipated in an electrical resistive load RL. The prism has a mass per unit length of m and 
is restricted to move in the y direction (transverse to the incident flow). 

Appropriate balance between inertia, damping, stiffness, electromechanical, and fluid forces in the system gives the 
following ordinary differential equation: 

1 7 
my+cy + ky = -pWDCY - FEEM, (1) 
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Fig. 1. (a) Sketch of the spring-mounted galloping body in cross-flow and linked to an electromagnetic generator, (b) Equivalent electrical circuit of the 
electromagnetic generator. 



where y denotes the transverse position of the prism, p is the fluid density, U is the undisturbed velocity of the incident flow, 
D is the characteristic dimension of the prism prone to gallop normal to the flow, CY is the instantaneous fluid force 
coefficient in the transverse direction to the incident flow, FFEM is the electromagnetic force per unit length in the y direction 
and, finally, the dot symbol stands for differentiation with respect to physical time t. Note that for the sake of simplicity, 
damping and stiffness forces have been considered to be linear. For an introduction about how non-linear effects can be 
introduced and mathematically modelled the reader is referred to Lee et al. (2011). 

In order to describe Cy, the quasi-steady hypothesis is resorted to, since it is assumed that the characteristic timescale of 
the prism oscillation (of order 2w(m/fe)1/2) is much larger than the characteristic timescale of the flow (of order DjU). Then, 
the fluid force is only dependent on the instantaneous attitude of the prism with respect to the flow, which can be described 
by the motion-induced angle of attack a. Since the motion-induced angle of attack is given by a= tan _1(y/lO, the fluid 
force can be introduced as an empirical function of y, which can be approximated by a polynomial when the static variation 
of CY with tan a is known (Blevins, 1990). Observe that CY can be related to the lift CL and drag CD coefficients since 
Cy = - (CL + CD tan a)/ cos a. For our purposes a cubic polynomial can be considered accurate enough to approximate the 
vertical fluid force coefficient: 

Cy = 0 ^ + 03 (Jj^j, (2) 

where a^ and a3 are the empirical coefficients to fit by a polynomial the CY versus tan(a) dependence measured in static 
tests, a-i and a3 are dependent mainly on the cross-section geometry of the prism. The linear coefficient a-i is the slope of the 
vertical fluid force coefficient at zero angle of attack, and therefore it is necessary for it to be a-[ > 0 in order to obtain a 
galloping response (that is, linearized fluid forces act as a negative damping term when a-\ > 0). a3 accounts for the 
nonlinear effects and it has to be negative. 

Let us consider an equivalent electrical model to modelize the electromagnetic generator (see Fig. 1(b); El-hami et al., 
2001), which gives a relationship between the main parameters of the electromagnet generator and the induced 
electromagnetic force FFEM: 

(RL+Rc)i+L^t = kE^, (3a) 

FFEM = kEi, (3b) 

where RL is the resistance of the load connected to the generator, Rc is the internal resistance of the coil, L is its inductance, 
kE is an electromechanical coupling constant determined by the flux density of the magnetic field and the number of turns 
and length of the coil, and i is the intensity circulating through the coil. Eqs. (3a) and (3b) constitute a simplified model of an 
electromagnet generator such as the one described in Rizzoni and Hartley (2000). Introducing dimensionless variables Y=yjD, 
1= i/Ic and T = coNt, with coN = (kjmfl7- and Ic = mcoj/D/lcE, one may rewrite Eqs. (l)-(3) in dimensionless form: 

Y"+2^r+Y=B(a^(f] >-7' (4a) 

PI'+I = 2£EY, (4b) 

where prime denotes the differentiation with respect to the dimensionless time, /? = (Lo}N)/(RL+Rc) is a relationship between 
the characteristic electrical and mechanical time, £ = c/(2mo}N) is the dimensionless parasite mechanical damping, 
If = U/(coND) is the reduced velocity, m* = m/(pD2) is the mass ratio and £E is a dimensionless damping coefficient which 
is a result of the coupling of the dynamics of the prism and the electromagnetic generator: 

C ^ (5) 
b £ 2mcoN(RL+Rcy

 K ' 
A conversion factor (or efficiency) can be defined as the mean power PE dissipated at the electrical load divided by the total 
power in the flow per unit length as 

where 

-pWD 

1 / - , 2 pE = jJo
 RL>! dt. (7) 

The efficiency, as described in Eq. (6), is presented in the same way as in Barrero-Gil et al. (2010), or Grouthier et al. (2013), 
where the power harvested is compared to the power available in the flow in a section equivalent to the diameter of the prism. 
However, other ways of defining such an efficiency are possible. For instance, the efficiency can be defined with the power 
harvested compared to the power available in the flow in a section equivalent to the space swept by the prism during its 
oscillations. Both efficiencies might yield different results of optimal configuration as one stresses the importance of the 



maximum power extracted while the other one stresses the importance of maximizing the energy harvested per unit length in 
the transverse direction. 

The system given by Eqs. (4) to (7) allows us to obtain the galloping response and the power dissipated at RL as a function 
of the mechanical parameters (m* f, coN), geometrical and flow parameters (If, ai, a3, D), and parameters of the 
electromagnet generator (kE, f), Re). The system can be solved numerically and an optimization method might be used to 
obtain the optimal value of RL that maximizes the energy harvested for fixed values of other governing parameters. 
However, because of the large number of governing parameter this task may be costly in time and may not be so easy to 
establish design rules for RL. In this sense, an analytical approach, which is presented in the following section, can be quite 
useful. 

3. Galloping response, energy efficiency, and optimal electrical load resistance 

3.1. Low frequency oscillations, ft <̂  1 

If/? <̂  1 is considered, it means that the effect of the inductance on the dynamic response is negligible and in this case, an 
easy simplification can be considered, that is i = 2£EIcY' (see Eq. (4b)), and Eq. (4a) is then 

v + 2 4 r + y = ^ ( f l ^ + f l 3 ( ^ ) 3 ) - % r . ( 8 ) 

Eq. (8) can be solved approximately when the nonlinearity of the fluid forcing term is weak compared to the linear forces 
(for 771*11* > 1, which is usual when the fluid in consideration is air). In that case, one may assume that the steady movement 
response is sinusoidal, Y = A* sin(<w*T), where co* = co/coN. Substituting this into Eq. (8), taking into account that 
COS3(O}T)^3 cos (cor)/4, (i.e. higher order terms in COS(3<M*T) are neglected) which is valid when the system is narrow­
band in frequency such as for the case in study, and equating sine and cosine terms, after some algebra one gets 

(4U* ^'2 

A*=(^-(4m*£T-a,U*)) , (9a) 

co* = 1, (9b) 

where £T = C+CE- Observe that galloping oscillations (A* > 0) are only possible when U* >U* = 4m*£T/a1. It is important to 
remark that the value of U* depends on the load resistance RL (via ££), which is a primary result of the ongoing study. 

The mean power per unit length is (see Eq. (7)) 

?E=\R&CA*2CO*2 = 8Rfff\4m%T-a,lf), (10) 

and the efficiency 

1 6 K i C j / | , T-a-tU*). (11) 
lE 3a3pcolD4U*2{ ST ' } 

Eq. (11) can be rewritten in order to express all variables non-dimensionally as 

8m*£E 

3a3(\+Rc/RL)U*2 ^ = o „ „ n,„*2(4m^T-a,U*). (12) 

3.2.2. Maximum efficiency achievable for fixed RL 

The conversion factor (or efficiency) is a function of RL and If, so in order to obtain the maximum efficiency, it is 
necessary to obtain the partial derivatives of Eq. (12) with respect to If and RL, equate to zero and solve the system of 2 
equations and 2 unknowns: 

t-°- (,3b) 

In first place, if RL is considered to be a fixed value, then only Eq. (13a) applies. By solving Eq. (13a) it is possible to retrieve 
the reduced velocity at which the maximum efficiency is achieved, giving a value of reduced velocity of 2U*: 

V* =2lf = 8m^ + ^ . (14) 



Substitution of Eq. (14) into Eq. (12) allows us to get the maximum efficiency achievable when RL is fixed, given by 

nmax . 
1E • 

1 
6a3\\+Rc/RLJ\\+C/C, 

1 
(15) 

which relates the maximum achievable efficiency with the cross-section geometry of the prism (ai and a3), RQ/RL, and the 
ratio between the parasite damping and the electrical damping CICE-

A universal curve for the efficiency can be introduced using two new normalized variables, fj = rjE/rjfax and 0 = U*/U* 
and substituting them into Eq. (12) 

1E-
4(1 - LJ) 

02 ' 
(16) 

With these re-normalized variables, it is possible to collapse the efficiency curves for all electrical/mechanical configurations 
into a single curve (Eq. (16)) providing information about the transverse galloping response over a range of reduced incident 
velocities. From Fig. 2, once galloping is started (0 = 1), the normalized efficiency increases rapidly with the normalized 
reduced velocity until a value of 0 = 2 is reached obtaining a value of the normalized efficiency of f\ = \, then the 
normalized efficiency diminishes slowly with 0. 

Thus, it is important to correctly tune the value of RL so as to modify U* and correspondingly be at the maximum possible 
efficiency for each value of the reduced velocity and obtaining a broadband type of response. 

3.2.2. Optimal electrical load resistance for maximum power transfer at any instant 
From the point of view of designing a control law capable of harnessing the maximum possible power at any instant 

(similar to a tracking-point strategy for changing flow velocity conditions), RL has to be consequently modified depending on 
If. In this case, it is only necessary to solve Eq. (13b) and by doing so, it is possible to obtain the electric load that maximizes 
the power harvested for each value of the reduced velocity: 

,1/2 

R Lop '• + Rr U (17) 

where p = 4m*kE/(2mcoN) and q = a^U*-4m*£. 
Eq. (17) gives the optimal load electrical resistance as a function of the reduced velocity, geometry of the galloping body 

(ai), the mechanical parameters of the galloping system (m, m* f, and a>N), and electric properties kE and Rc of the 
electromagnet. When RL is large compared to RG which should be a usual condition from the practical point of view, Eq. (17) 
is further simplified and RLop approximates to 

R Lop 
2p _ Am*kE 

' q ~ma>N(a^U*-4m*C)' 
(18) 

Observe that this equation suggests that RLop scales as U* ~ for large values of If. 
If the resistance RL is tuned as suggested at Eq. (17) for each reduced velocity, then the maximum possible power is being 

transferred from the flow to the electrical load. Regarding the issue of power transfer to the electrical generator, it is in order 

U/Ur 

Fig. 2. Universal plot of the efficiency versus the flow velocity. 



to refer, in broad terms, to the Maximum Power Transfer Theorem. This theorem states that for a given constant voltage 
supply, the maximum power transferred to the electrical load RL occurs whenever RL=RC. In practice, this theorem suggests 
a way to solve the actual engineering problem of tuning the generator parameters so as to optimize power transfer. 
However, in the case presented in this paper, the Maximum Power Transfer Theorem cannot be applied straightforwardly 
because the supply voltage is not constant. In particular, voltage behavior is sinusoidal and it depends on both the reduced 
velocity and RL itself. Thereby, actual tuning of the generator parameters requires solving Eq. (13b) as previously stated. 
Nevertheless, it is to be noted that in the asymptotic limit of very large reduced velocity the voltage becomes less and less 
dependent on load resistance, see Eq. (10), and therefore, in this distinguished limit, the relation provided by the classical 
Maximum Power Transfer Theorem is recovered. 

From the practical side, the variation of the load resistance could be done using a DC/DC converter capable of varying the 
equivalent electric load the galloping prism sees in order to always capture the maximum energy for the whole range of 
reduced velocities. This is a usual application in wind turbines with battery charging applications such as De Broe et al. 
(1999) and Moor and Beukes (2004). A Maximum Power Point Tracking (MPPT) system can also be used. This system can be 
fed with a look-up table with the actuation map as obtained in Eq. (17) or by using algorithms which do not use any prior 
information and by using a control system they automatically obtain the optimal load resistance as proposed in Koutroulis 
and Kalaitzakis (2006). 

Finally, there is a maximum absolute efficiency point which fulfills both Eqs. (13a) and (13b) given by 

R c +4rri*?) ' ( 1 9 ) 

which is independent of ai and a3. Once the value of RLmax that maximizes the efficiency is known, the value of the reduced 
velocity at which such maximum happens is also determined: 

II* n? \ TrrVP A 8 m (L,+L,E(RLmax)) n n . 
U max(" imax) = ^Ug(RLm!ix) = — , (20) 

and 

,„abs,max £_(_ 

Qi 

1 \ / 1 
n\s,max

 6fl3 yx +Rc/RLmax) [x +£/£E(RLmax)) • ( 2 1 ) 

3.2.3. Practical example 
It may be now of interest to discuss a practical example that illustrates the theoretical results obtained previously. 

It consists in a spring-mounted prism with a D-type cross-section which is linked to the magnet of an electromagnet in such 
a way that the magnet can oscillate relative to the coil; the prism is under the action of an airstream and the electromagnet 
has a maximum rated power of 50 W. Physical properties of the galloping body and the electromagnet generator are listed in 
Table 1. 

Fig. 3(a) shows the optimal load electrical resistance RLop that should be connected at the electromagnet at each wind 
speed (computed from Eq. (17)). Note how RLop diminishes as wind speed increases; note also that RLop is very large with 
respect to Rc (for U* = 50, RLop is still 24 times larger than Rc). Fig. 3(b) shows the electrical power variation with the wind 
speed when the load electrical resistance is optimally tuned and Fig. 3(c) shows the efficiency behavior with the reduced 
velocity (wind speed) when the load electrical resistance is optimally tuned; observe that because of non-zero mechanical 
parasite damping (remember that f=0.002) and electrical losses at Rc, the maximum efficiency has diminished from the 
ideal value of 0.54 ( —a^/(6a3)) down to 0.51; this absolute maximum value has been achieved with RLmax = 420Q. at 

Table 1 
Physical properties of galloping body and the electromagnet generator. Values of the 
coefficients al and a3 are taken from Barrero-Gil e t al. (2010). 

Variable Value 

Rc 12.2 Ohms 
kE 10.6 N/A 
L 0.0096 H 
m 0.62 kg/m 
C 0.002 
k 6.2 N/m 
a, 0.79 
a3 -0.19 
D 0.1m 
L 0.5 m 
p 1.25 kg/m3 

m* 50 
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Fig. 3. Variation with the reduced velocity U* of the optimal electrical load resistance (a), output electrical power (b), efficiency (c), and fi (d). 

(Jjlax = 34 as predicted by Eqs. (19) and (20). Because of the optimal choice of RLop for each wind speed, the efficiency 
dependence with the reduced velocity is diminished significantly and a broadband-type behavior can be observed. The idea 
is that, as If increases, the electrical load resistance is diminished according to Eq. (17) in order to increase the electrical 
damping and thus increase U* in such a way that If is close to 2U* at any instant, making possible to maintain the efficiency 
at high level for a larger range of reduced velocities. From the practical side this is a remarkable result since it is possible to 
get a low critical velocity of galloping and, at the same time, get high efficiency in a large range of reduced velocities. 
Observe that the potential to enlarge the range where efficiency is maintained at a high level is limited by Rc, since it 
imposes an upper limit for the electrical damping. Finally Fig. 3(d) shows the value of f) variation with reduced velocity in 
order to check that/? is always much lower than 1. 

Fig. 4(a) and (b) highlights the advantage associated with optimally choosing RL at any value of the reduced velocity. 
Fig. 4(a) shows the efficiency dependence with the reduced velocity when the electrical load resistance is optimal at any 
reduced velocity, as well as the efficiency dependence for two cases where the electrical load resistance takes a constant 
value. When RL takes a constant value, as the reduced velocity increases the efficiency increases until it reaches a maximum 
value (dependent on RL). Further increase in If results in a decrease in the efficiency which approaches to zero, so that the 
efficiency of energy conversion is in high levels only in a small range of reduced velocities: at low reduced velocities for large 
RL values and high reduced velocities for small RL values. However, when RL changes optimally with the reduced velocity, the 
efficiency increases with If until it reaches a final value of high efficiency and then remains tenaciously at high levels almost 
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Fig. 4. (a) Efficiency variation with reduced velocity for optimal electrical load resistance (solid line) and for two different fixed values of the electrical load 
resistance (dashed lines). White circles denote the local maximum efficiency for a given J?L whereas black circle denotes the absolute maximum efficiency. 
Note that the efficiency variation with reduced velocity for optimal electrical resistance (solid line) is the envelope of all local maximum efficiency points, 
(b) Output power variation with reduced velocity for optimal electrical load resistance (solid line) and for two different fixed values of the electrical load 
resistance (dotted line). 

independent of the reduced velocity, which shows the advantages of adjusting continually and optimally the electrical 
resistance. In addition, when RL is optimally chosen the reduced velocity at which galloping starts (and power output 
begins) is low, but when RL takes a fixed value galloping oscillations can start at large reduced velocities (observe in Fig. 3(a) 
that efficiency curve starts around Li* = 3 for R i =3000 and Li* = 7.5 for RL=\QQQ). Finally, it is apparent from Fig. 4(a) that, 
as discussed earlier, a re-normalization exits and all curves for RL constant collapse into a single one when redrawn in 
normalized variables U and fj. 

In terms of electrical power output, the advantage of adjusting continually the electrical resistance RL with the reduced 
velocity over-taking a fixed value is also clear, as is can be seen in Fig. 4(b). 

The energy harvesting efficiency response obtained can be compared to other devices. For example, in Abdelkefi et al. 
(2013), the same galloping model as presented here was taken into account, but the coupled electrical model used was a 
piezoelectric one. Results of efficiency for piezoelectric coupling leads to values much lower than the ones presented in this 
paper, between 0.01 and 0.03. An experimental validation of electromagnetic energy extraction using wake galloping (not 
transverse galloping) through wind tunnel testing was carried out by Jung and Woo-Lee (2011); they measured efficiencies 
up to 0.094. In the VIVACE concept, the energy is generated via electromagnetic conversion and taking advantage from 
Vortex Induced Vibrations of a circular cylinder; efficiencies up to 0.31 were reported (see Raghavan, 2007) by correctly 
tuning the load resistance. While VIV is a resonance-type phenomenon where energy can only be harvested from the 
current for incident reduced velocities close to the resonance one, galloping has a much more broad type of response and by 
continuously changing RL, it is possible to even maintain high efficiency values for broader values of the reduced velocities. 

3.2. Moderate frequency oscillations fi < 1 

In some situations, requirements needed for /? <̂  1 may be not fulfilled, so it is of interest to expand the domain of the 
analysis in order to look for the inductance effect when /? cannot be neglected and fi<\. To this end, a perturbation 
expansion in /? is considered for the intensity in the electromagnet, J = J0 +/?/i +fi2h, in such a way that Eq. (4(b)) may be 
rewritten as 

/?(/0 +pi\ +p2I'2) + (Jo +/?/, +P2I2) = 2CEY. 

Collecting, respectively, zero order terms, f) and f)2 order terms 

/ i+r0 = o, 

(22) 

(23a) 

(23b) 

(23c) 



and solving one after the other, one may get 

I = 2£E(Y-pY"+/]2V'>). 

Substituting now Eq. (24) into Eq. (4a) 

"2nr = Z(a^+a3(jf) ) - 2 ^ ' + 2 ^ " - 2 ^ 2 y " 

(24) 

(25) 

The effect of the electrical inductance (/?) is to introduce a negative added mass (proportional to fS) term as well as a 
negative damping term (proportional to f)2) into the dynamics of the galloping prism. Operating in the same way as 
previously, Eq. (25) can be analytically approximated when m*U* is large enough. Assuming that the steady motion 
response is sinusoidal, Y = A* sin (co*f), where co* = co/coN, and substituting this into Eq. (25), after equating sine and cosine 
terms, and taking into account that COS3(£UT)^3 COS(<MT)/4 one gets 

A"=r(^y\4m%T-a^-2m^^MEfi 
i 

1/2 

Since electrical power is proportional to A*2co*2 (see Eq. (10)), let us to collect A* and co*: 

A*2"*2 = ( S ( 4 m ^ - a i U * - 2 m * < T ^ ) ) > 
which can be simplified if terms or higher order than fp are neglected 

A*2 of2 = r^-(4m*CT-a1l/*-4m*C£/J2)") +0(p3), 

(26a) 

(26b) 

(27) 

(28) 

h 
2^fi _ 2 ^ + 0 ( ^ . 
-KEP~ 

Substituting Eq. (28) into Eq. (10), the electrical power per unit length is given now by 

j 8RL?EI2
CU*(\-/J2)( 

3a3 
4m*CT-a-iU*-4m*CEfi 

(29) 

(30) 
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Fig. 5. (a) Optimal electrical load resistance variation with p computed numerically (solid line) and given by analytic approximation (Eq. (32)). The optimal 
value predicted when inductance effects are not considered (Eq. (17)) is also shown (dashed line), (b) Relative error variation with p for the analytic 
approximation when inductance effects are not considered (dashed line) and for the analytic approximation when inductance effects are considered 
(dotted line). U* = 14.94 and parameters listed in Table 1. 



and the efficiency by 

4 = 16Jfr&c(l -/) (Am% v*_4m%Efi2), (31) 
lE 3a3pDco3
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where, as said, fP terms have been neglected. 

3.2.2. Optimal electrical load resistance 
The optimal electrical load can be obtained by differentiating Eq. (30) with respect to RL and equating to zero; this leads to 

2 \ V 2 

***=* i f ? ) a -/?2)2+KC f^ - ? a -p2))) , 

which is valid up to order /?3. Note that Eq. (32) coincides with the result given in the analysis carried out for low frequency 
oscillations (Eq. (17)) when/?=0. Fig. 5 shows a comparison of this result with numerical resolution of the complete system in 
order to quantify the validity of the assumptions made. To this end, an optimization method was employed to maximize the 
efficiency given by Eqs. (6) and (7) together with a fourth order Runge-Kutta scheme to numerically solve Eqs. (4a) and (4b). 
It has been considered to be the same parameters that were presented earlier in a practical example (Section 3.1.3, Table 1) and 
U* was fixed at a value of 14.93 (note that the optimal RL predicted was 1000 Ohms in that case for /?= 0, see Fig. 4(a)), and /5 
was varied between 0 and 1. 

As it can be seen from Fig. 5(a) the RLZ,° given for the simplified analysis where /? was neglected (dashed line) is a good 
approach up to values of beta around 0.1 where deviations between flf",0 and the numeric computed value (solid line) is 
around one per cent. Note that such an approximation leads to values of the electrical load higher than the required ones. 
The analytic prediction for Rit where the inductance effect is considered by a second order perturbation approach 
(Eq. (32)), dotted line, is valid until f) values of 0.3 with deviations lower than one per cent with respect to the numerical 
computed value. As a comparison, for /?=0.3 the relative error considering flf",0 would be around 10 per cent. For 
completeness, Fig. 5(b) shows the relative error for RLZ,° and RLZ,° as a function of/?. As it can be seen, R^ t is a valid 
approximation for f) values up to 0.6 (relative error less that 10 per cent). 

4. Concluding remarks 

An electro-fluid-elastic model has been presented to describe in a simplified way the electromagnetic energy harvesting 
from a flowing fluid taking advantage of Transverse Galloping oscillations. Two different levels of simplification have been 
made depending on the comparison between the characteristic electrical and mechanical timescales. In both cases, the 
effect of the electrical resistance load applied at the electromagnet on the energy harvested has been discussed analytically. 

When the characteristic mechanical timescale is very large compared with the characteristic electrical time the 
inductance of the electromagnet can be neglected and the dynamical effect of the electromagnet in the galloping prism is 
just to introduce a damping force term. When the characteristic timescales are not so different the inductance needs to be 
considered since it introduces an additional stiffness term as well as a negative damping term into the dynamics on the 
galloping prism. 

For fixed geometry and mechanical parameters, it has been found that there exists an optimal electrical resistance load 
for each fluid velocity of the incoming flow. When the optimal electrical resistance load is optimally fixed at each reduced 
velocity, the efficiency dependence with the reduced velocity is weakened in the sense that once the high level of efficiency 
is achieved it remains high over a large range of reduced velocities (its behavior is much more broadband than the case of a 
fixed value of the electrical resistance load). This is a remarkable result from the practical side and can be helpful to design 
control laws that maximize energy harvesting for changing flow velocity conditions. The importance of this is further 
highlighted by considering that it seems to be easier to tune the load impedance than physically altering the stiffness of the 
elastic support of the galloping prism. In addition, with respect to the optimal electrical load resistance, it has been shown 
that the inductance effects (that is, fS) makes its value lower than for the case where /?=0. 

Finally, it should be noted that the work presented here is of a qualitative theoretical nature. That is, we aim to come up 
with a description of the system's basic behavior, based on a series of idealized hypothesis that reproduces generic trends, 
showing that there exists a link between the optimal electrical load resistance and the flow speed, but that may be too 
simplistic to reproduce its detailed engineering performance. This is the reason why, for example, as a first step, we have 
chosen to focus on the effect of fluid force related nonlinearities while keeping a simple linear modelling for other 
subsystems (mechanical, electrical, etc.). It is clear that these other nonlinearities may be important and they will be dealt 
with them in a future article but we still believe that our step-by-step approach may be useful to understand the overall 
system's behavior. Notwithstanding the fact that even if a full theoretical nonlinear model is developed and solved for all 
different parts, an actual experimental prototype should be manufactured and tested if the focus is placed on the 
engineering performance. 
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