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A B S T R A C T 

Transverse galloping is a type of aeroelastic instability characterised by large amplitude, 
low frequency oscillation of a structure in the direction normal to the mean wind 
direction. It normally appears in bodies with small stiffness and structural damping, 
provided the incident flow velocity is high enough. In the simplest approach transverse 
galloping can be considered as a one-degree-of-freedom oscillator subjected to 
aerodynamic forces, which in turn can be described by using a quasi-steady description. 
In this frame it has been demonstrated that hysteresis phenomena in transverse 
galloping is related to the existence of inflection points in the curve giving the 
dependence with the angle of attack of the aerodynamic coefficient normal to the 
incident flow. Aiming at experimentally checking such a relationship between these 
inflection points and hysteresis, wind tunnel experiments have been conducted. 
Experiments have been restricted to isosceles triangular cross-section bodies, whose 
galloping behaviour is well documented. Experimental results show that, according to 
theoretical predictions, hysteresis takes place at the angles of attack where there are 
inflection points in the lift coefficient curve, provided that the body is prone to gallop at 
these angles of attack. 

1. Introduction 

Galloping occurs due to the aerodynamic forces that are induced by the transverse motions of the structure. The 
aerodynamic self-excited forces act in the direction of the transverse motion resulting in negative damping, which 
increases the amplitude of the transverse motion until it settles down to a limited cycle. 

Galloping-induced oscillations are caused by forces which act on a structural element as it is subjected to periodic 
variations in the angle of attack of the wind flow. Usually the periodically varying angle of attack is generated by across-
wind oscillation of the structure. The frequency of the oscillations is approximately the same as the natural frequency 
of the structure, provided that the density of the structure is much higher than the flow density. 

In the last decades galloping has focused the attention of many researches, and large efforts have been devoted to study 
the galloping features of many bodies having different cross-sections. The influence of relevant parameters like the 
incident turbulence (Novak and Tanaka, 1974; Li et al., 1998; Ziller and Ruscheweyh, 1997, Hemon et al., 2001; Hemon and 
Santi, 2002), the geometry of the cross section (Ruecheweyh et al., 1996; Kawai, 1998; Luo et al., 1998; Gjelstrup and 
Georgakis, 2011), the Reynolds number (Sen and Mittal, 2011; Joly et al., 2012) or the hysteresis phenomenon (Parkinson 
and Brooks, 1961; Parkinson and Smith,1964; Luo et al., 2003; Ng et al., 2005, Vio et al., 2007; Barrero-Gil et al., 2009; 
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Dunnmon et al., 2011) have been treated. Although most of the effort in galloping research has been concentrated in bodies 
with square or rectangular cross-sections, prismatic bodies with other cross-sectional shapes have been also considered 
(Blevins, 1990; Naudascher and Rockwell, 1994; Alonso and Meseguer, 2006; Alonso et al., 2005, 2007, 2009, 2010). 

The description of the behaviour of a structure under the action of an incident flow is an extremely complex problem, 
whose theoretical analysis requires the settling of simplified models for making the analysis more affordable. In the 
derivation of such a simplified mathematical model some simplifying assumptions are needed, the ones giving to the 
simplest model being that the structure is described as a linear oscillator of one degree of freedom, that the structure is 
sufficiently slender to consider two-dimensional flow, and finally that the incident flow is free of turbulence. Under these 
conditions, focussing the attention on triangular cross-section bodies, let us consider a structure that at rest is oriented at 
given angle of attack a with respect to the incident flow. Assuming the structure oscillating along y axis direction within an 
uniform flow with velocity (i(Fig. 1), the relative velocity between the fluid and the body is V=[U'^ + (dyldty^\^^^, and the 
angle of attack due to oscillation is Aa=atan((d3//dt)/(i). Therefore, drag d(a+Aa) and lift l(a+Aa) are: d(a+Aa) = 
(l/2)/9V^bCd(a+Aa), and /(a+Aa)=(l/2)/9\/^bc/(a+Aa), respectively, where p stands for the fluid density, b for a 
characteristic length of the structure, ĉ  for the drag coefficient and C/ for the lift coefficient. The projection of those 
forces in y axis direction is/y(a+Aa) = (l/2)/9V^b[Cd(a+Aa)sin Aa+C/(a+Aa)cos Aa], thence, since V^ =(i'^[l+(dy/dt)^/ 
U'^\ = U'^[\ +(Aaf'\ the dimensionless coefficient of the aerodynamic force in the normal direction to the incident flow 
becomes Cj(a+Aa) = [\ +(Aay^\ • [Cd(a+Aa)sin Aa+C/(a+Aa)cos Aa]. 

Therefore, the equation of the movement of the body, assuming that the mass per unit length is m, and that it is 
elastically mounted on a support with lineal damping characterised by a dimensionless structural damping coefficient [y 
and an undamped natural frequency co ,̂ in dimensionless variables reads: 

'''^2An-dT2 
•- fiU^Cf(a+Aa), (1) 

where t] denotes the dimensionless vertical position, ri=yjb, % is the dimensionless time, z=a)^t, fi is the dimensionless 
mass of the structure per unit length, fi=pb^l(2m\ and Ur is the reduced velocity, Ur=UI(m,jb). 

From Eq. (1) the main features concerning galloping can be derived. In effect, assuming the angles of attack due to 
oscillation to be small enough (Aai <̂  1), if the aerodynamic force coefficient is expanded in powers of Aa (which is 
proportional to df;/dT): 

Cf= ^ a „ ( A a ) " , (2) 

the linear term of the expansion can be considered as a contribution to the total damping of the system (aerodynamic 
damping). Then, since the mechanical damping is generally positive, instability can only occur if the aerodynamic damping 
is negative, thus the well-known Den Hartog stability criterion (Den Hartog, 1956) for the potential susceptibility of a 
structure to galloping starting from a given equilibrium position is obtained: dc/(a)/da+Cd(a) < 0. 

Once the function c/a) is known, Eq. (1) can be solved either numerically or by asymptotic methods if the nonlinear 
aerodynamic term is small. In the case that both aerodynamic and damping forces are small compared with inertia and 
stiffness forces, solutions of Eq. (1) tend to a limit cycle of quasi-harmonic oscillations (this behaviour of the structure is 
quite usual because their mean densities are much higher than the density of the surrounding fluid). Depending on the 
shape of the curve Cj{a) some hysteresis phenomena can appear, the hysteresis being characterised by the existence of a 
solution that can alternately reach different cycles limits (the amplitude of the limit cycle of oscillation can be different, 
depending on whether the reduced velocity is increasing or decreasing). 

In a recently published paper (Barrero-Gil et al., 2009), the dynamic behaviour of galloping bodies has been analytically 
analysed by using a perturbation (Krylov-Bogoliubov) method, and the solutions corresponding to a variety of c/a) curves 
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Fig. 1. Definition of the geometry of tlie isosceles triangular bodies and of tlie parameters involved in the one degree of freedom galloping model. 



typical of bluff bodies were studied in order to clarify the correlation between the number of inflection points in the c/a) 
curves and the hysteresis, the main conclusion being that the number and position of the inflection points determine the 
regions where hysteresis in the galloping motion can appear. Thus, since Aa is small, in a first attempt it is c/a) SK Ci(a), and 
then the existence of an inflection point implies d^C/(a)/da^=0. 

The hysteresis phenomenon of two dimensional bodies having isosceles triangular cross-sections (Fig. 1) when 
subjected to cross-flow translational galloping vibration has been analysed through wind tunnel experiments. Triangular 
cross-section bodies have been chosen because these bodies have been extensively studied in the past (Alonso and 
Meseguer, 2006; Alonso et al., 2005, 2007; lungo and Buresti, 2009), so that a large amount of information is now available. 
In order to clarify the influence of the geometry on the hysteresis, six different triangular cross-sections have been 
considered, so that the hysteresis map in the angle of attack, triangle main vertex angle (a, /?), has been experimentally 
studied. 

2. Theoretical background 

According to the results already published (Alonso and Meseguer, 2006; Alonso et al., 2005, 2007) the stability to 
transverse translational galloping of triangular cross-section cylinders are both cross-sectional geometry and angle of 
attack dependent. Available experimental results also show that configurations which are stable at a certain reduced 
incident wind velocity become unstable when that velocity is increased beyond a critical value that depends on the 
configuration (cross-section geometry and angle of attack). Isosceles triangular cross-section prisms may present galloping 
instability (if the appropriate critical incident wind velocity is reached) in configurations where the main vertex of the 
triangle is almost pointing the incident flow (at angles of attack higher than the ones where the triangular profile stalls, 
around a=20°) or in configurations with the base of the triangle facing the wind flow (a SK 180°, the flow approaching 
clearly a bluff body), covering the angles of attack interval a SK 180° + /?/2, basically when the wind flow is aligned with the 
lateral sides of the triangle (Alonso et al., 2005). Another less critical instability region appears for intermediate values of a, 
between 50° and 90°, provided the vertex angle p is high enough (Fig. 2). 

However, as already stated this is not the only criterion to be considered for hysteresis, in addition the C/(a) curve must 
present an inflection point within the range of values of the angle of attack where galloping can takes place. Fig. 3 shows 
the variation with the angle of attack a of the functions C/(a), dc/(a)/da+Cd(a) and d^C/(a)/da^ corresponding to the six 
triangle geometries under consideration (/?=10°, 20°, 30°, 40°, 50° and 60°). In these plots inflection points are identified 
by the condition d^C/(a)/da^=0, thus only angles of attack close to these inflection points lying within galloping instability 
regions have been tested. These points where hysteresis can appear are identified with thick striped lines in Fig. 2. 

3. Experimental set-up 

To perform the experiments reported in this paper an open circuit wind tunnel has been used. Wind tunnel test 
chamber is 0.15 m width, 0.90 m high and 1.20 m long. Wind velocity profile at the model test section is uniform within 
+ 1%, the turbulence intensity being around 2%. The wind tunnel is powered by an electric motor with variable frequency 

a [degrees] 

Fig. 2. Stability diagram in the angle of attaclf—main vertex angle plane {a, fS) based on dynamic test results. Numbers on the curves (dashed lines) 
indicate the value of the reduced incident wind velocity Ur. Note that the stability diagram is symmetric with respect too; = 180°. Solid line represents the 
boundaries of the unstable region according to static Den Hartog criterion (Alonso et al., 2005). Striped zones indicate the regions where hysteresis can 
appear. Circles identify the tested configurations: a black circle indicates that hysteresis has been detected, and a white one that this phenomenon has 
not been observed. 
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Fig. 3. Variation with the angle of attaclf, a, of the lift coefficient, C; (white circles), the Den Hartog function, dCj/doc+ĉ  (dashed line), and the function 
(d^Cj/da )̂/10 (solid line). Note that, due to scale constraints, (d^Cj/da )̂/10 instead of d̂ Q/doĉ  has been represented. Experimental results correspond to 
triangular cross-section bodies with main vertex angle p ranging from 10° to 60°, as indicated in the plots. Note that the curve Ci(a) as well as d̂ Q/doĉ  are 
anti-symmetric with respect to a = 180°. 

drive, which provides a better control on the wind velocity. The wind velocity of the stream at the test section of the wind 
tunnel was in the range from 7 to 26 m/s, which provides Reynolds numbers ranging from lO"* to 2.6 x 10^, based on the 
model characteristic length b (Fig. 1). 

Six isosceles triangular cross-section prisms were tested, the main vertex ranging from /? = 10° to /? = 60° in 10° steps. 
All triangles share identical maximum characteristic length b=0.10m, the base of the triangle being 2b tan(/?/2). The 
model span is 0.145 m. 

As sketched in Fig. 4, the selected triangular prism (A) is attached to a rod 8 mm in diameter through an appropriated 
screw; the rod is fixed to the extreme side of a mechanism (C), in such a way that the prism angle of attack, a, can be set 
with + 0.5° accuracy (D). The mechanism consists of two long parallel beams which are fixed to a reference frame through 
ball bearings. At the opposite ends of the long parallel beams is located the vertical small beam that supports the prisms, 
this small beam being joined to the long ones through ball bearings also. This mechanism allows the vertical (normal to 
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Fig. 4. Sketch of the dynamic test lay-out: prism model (A), supporting rod (B), oscillating parallel beams (C), angle of attack scale (D), rotating ball 
bearings (E), springs (F), laser vibrometer (G), and reference frame (H). All the elements are placed in a tight chamber outside the wind tunnel test, except 
the prism, which is inside the test chamber, and the supporting rod that joint the prism to the oscillating mechanism, which is partly inside the test 
chamber and partly outside, passing through a vertical slot made at the test chamber wall. 

Table 1 
Mechanical properties of the prisms: mass, structural damping coefficient, natural frequency and Scruton number Sc=2m(/pb^. 

Triangle main angle, fS 

10° 
20° 
30° 
40° 
50° 
60° 

Mass, 

2.15 
2.15 
2.35 
2.55 
2.65 
2.65 

m [kg/m] Struct 

0.008 
0.008 
0.008 
0.010 
0.014 
0.014 

Structural damping coefficient, ( Natural frequency, (B„ [HZ] Sc 

2.5 
2.5 
2.3 
2.1 
2.0 
2.0 

wind) motion of the prisms. In addition, there are two springs (F), allowing thus to control the frequency of the oscillation 
in the normal to flow direction. Note that with this testing device oscillation is purely translational. 

The normal to flow displacement of the prisms are recorded using a laser vibrometer M7/L100 from MEL Instrument, 
with a range of 100 mm, a resolution of 6 \im and a sampling frequency of 54 kHz. This equipment is anchored to the fixed 
frame, the laser beam being directed toward a reflecting surface placed on the lower long beam. Measurements were 
registered at 800 Hz sampling rate during 25 s with a 12 bit A/D board (from Keithley instruments). Post-processing of the 
recorded signals gives plots of normal to flow displacement versus time. 

Experimental sequence is as follows: once a selected model is fixed to the supporting rod of the holding system, and the 
chosen reference angle of attack a is set, the experimental sequence runs almost automatically. The wind tunnel is 
switched on at a small velocity and the output from the laser vibrometer is recorded during 25 s, after a given period 
of time (typically around 30 s), to let the oscillations reach the limit cycle. Then the wind tunnel velocity is increased and, 
after waiting again 30 s to overpass the transient period, the new output from the laser vibrometer is recorded. Preliminary 
tests were performed to determine that a time of 30 s after changing the incident wind velocity was enough to let the 
configuration reach the limit cycle, with a maximum deviation of 5% in the amplitude of the limit cycle during the 
following 25 s. The procedure described before is repeated until the entire range of wind velocities is covered (from 7 m/s 
to 26 m/s at small steps, typically 1 m/s), and then the process is repeated again but now with decreasing wind tunnel 
velocities (from 26 m/s to 7 m/s, also at small steps). Static and dynamic pressures inside test chamber were measured 
with an Air Flow 048 Pitot tube connected to a Schaewitz Lucas P-3061-2WD pressure transducer. 

The natural frequency co^ and the structural damping coefficient (^ of each one of the models tested have been 
measured using the same experimental configuration, by letting the model vibrate freely in no wind conditions. 
Corresponding values are given in Table 1, together with the mass and the Scruton number, defined as Sc=2mC//9b^. It 
must be pointed out that the stiffness of the models has been chosen low enough in order to find critical galloping 
velocities within the range of velocities allowed by the wind tunnel used in the tests, and also to get natural frequencies 
below the vortex shedding frequencies (decoupling therefore both phenomena, galloping and vortex shedding). For the 
same reason, the testing device has been designed with a structural damping as low as possible, since it is not the purpose 
of this paper to evaluate the influence of the mechanical properties in the galloping stability. 

Once the whole range of velocities has been tested (both in the increasing velocity sense and in the decreasing one), a 
new value of the angle of attack of reference is set, and the process is repeated again. The same procedure being applied to 
each one of the triangular cross-section bodies under consideration. The selection on the reference angles of attack has 
been done taking into account the existing knowledge on the galloping behaviour of these bodies (Fig. 2). 



4. Results discussion 

As above stated, hysteresis requires that for a given angle of attack and triangle geometry (a, P) the body must be prone 
to gallop (that means that the Den Hartog stability criterion must be fulfilled) and that close to the angle of attack under 
consideration the c/a) SK Ci(a) curve present an inflection point. Therefore, there are two conditions to be fulfilled 
simultaneously: the Den Hartog criterion, which implies dc/(a)/da+Cd(a) < 0, and the existence of a inflection point, which 
roughly speaking implies d^C/(a)/da^=0. 

From the temporal series of normal to wind displacements, a(t\ corresponding to each wind velocity U and tests 
configuration, identified by the angles p and a, the dimensionless root mean square of the lateral displacement A=anns/ib 
results, where Orms is the root mean square value of the a(t) series and b the characteristic length defined in Fig. 1. Besides, 
the reduced velocity (ir=(i/((X»nib) is also calculated. 

The results obtained, A versus (ir, for some selected configurations are depicted in Figs. 5 and 6, and a summary of the 
hysteresis behaviour of tested triangular bodies is presented in Fig. 2. Concerning Fig. 5, at is can be observed the 
hysteresis depends on the angle of attack, this phenomenon appearing only around the values of a where an inflection 
point exists. 

31 different configurations, spread on the plane a-fi, in the areas of interest (where hysteresis can appear), have been 
tested. These areas are angles of attack close to a=30° and close to a = 180°. The values of a were selected with a difference 
of 5° between two consecutive values, in order to clearly separate the dynamic responses of two adjacent configurations. 
Note that in the experimental procedure there are many parameters involved, and although all along the experimentation 
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Fig. 5. Variation with the reduced velocity, Ur, of the dimensionless root mean square oscillation amplitude, A. Experimental results correspond to 
triangular cross-section bodies with main vertex angles fS and angles of attackoc, as indicated in the plots. Black circles indicate results obtained by 
increasing the reduced velocity, whereas white ones indicate results obtained by decreasing the reduced velocity. 
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these parameters have been carefully controlled, the hysteresis itself is a noisy phenomenon influenced by many other 
variables which are extremely difficult to control, such as small variations in the incident flow conditions (mean velocity 
and turbulence intensity) or mechanical inaccuracies in the experimental apparatus. It must be stated that the existence of 
hysteresis on the dynamic response of a given configuration has been considered to exist only when the A versus Ur curves 
obtained during the increasing incident flow velocity phase and the decreasing one are clearly different. 

It seems, however, that this 5° separation into two consecutive values of the angle of attack is a too large step in tests 
with low values of a (in the region close to a=30°). This would explain why no hysteresis has been detected in this area, 
except for triangles with /?=50°, see Fig. 2. There is another explanation based also on the limitations of the test setup. In 
effect, as it can be observed in Fig. 2, in this region (a SK 30°) galloping instability is associated with large values of the 
reduced velocity UR (see also Alonso et al., 2005). Therefore, since U=UROj„b, for a given value of the reduced velocity, the 
wind speed at the test chamber increases as the natural frequency (X»„ does or, according to data shown in Table 1, as the 
triangle main vertex angle decreases. Thence, in some configurations the maximum wind tunnel air speed was reached 
before hysteresis appears. 

The situation is much more clear in the region close to a = 180°, because for this value of the angle of attack all the 
configurations tested are prone to show hysteresis provided that /?>10°. However, it must be stressed that a = 180° 
configurations become stable when the vertex angle p becomes high enough, so that no galloping occurs at a = 180° for 
/? > 70° (Alonso and Meseguer, 2006). This behaviour can be observed in Fig. 2: triangles with /?=10° do not show 
hysteresis at a = 180°, the magnitude of the increasing-decreasing velocity loop growing as the vertex angle grows (Fig. 5). 
The hysteresis becomes maximum for p SK 40°, and then it decreases as the value of/? grows until it disappears for p SK 70° 
(see the response of /?=60° triangles close to a = 180° in Fig. 6). 



Obviously, it can be expected that the hysteresis be less pronounced as the distance to the inflection point increases. 
This behaviour is shown in the plot included in Fig. 6, where the response of equilateral triangles (/?=60°) at angles of 
attack ranging from a = 155° to a=180° are represented (according to Fig. 3 these triangles have d^C//da^=0 at KSK 165° 
and at a = 180°). 

Finally, the influence of the free stream turbulence is not considered relevant for this type of geometries with sharp 
edges, because at any angle of attack the incident flow separates at any of the vertex of the triangle, provided that these 
vertexes are sharp enough, and from then the flow becomes turbulent, even if the incident flow were initially laminar. This 
effect was proved by the authors (Alonso et al., 2007) for these same triangles. 

5. Conclusions 

Transverse galloping of triangular cross-section two dimensional bodies has been experimentally analysed focusing the 
attention on the appearance of hysteresis phenomena in the dynamic response. Based on simple criteria the possibility of 
hysteresis has been defined (the tested configuration must be prone to gallop according to Den Hartog conclusions and an 
inflection point must exists in the lift coefficient versus angle of attack curve), which has been experimentally checked in 
the case of triangular prisms. Experimental results show a good agreement with the theoretical predictions of those simple 
galloping criteria for angles of attack close to a = 180°, when the base of the triangles are facing the incident flow. In the 
other region of transverse galloping instability where hysteresis should appear, a around 30°, being the size of the region 
of the same order of magnitude of the interval chosen to change the angle of attack in the test set-up, the tests reproduce 
the theoretical result only in one of the configurations. Therefore it can be concluded that the absence of hysteresis in the 
a sK 30° region is due to the mechanical limitations of the experimental facility rather than to a real absence of hysteresis 
(which probably will appear at higher wind velocities than those tested). 
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