180 research outputs found

    Clinical decision support of therapeutic drug monitoring of phenytoin: measured versus adjusted phenytoin plasma concentrations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Therapeutic drug monitoring of phenytoin by measurement of plasma concentrations is often employed to optimize clinical efficacy while avoiding adverse effects. This is most commonly accomplished by measurement of total phenytoin plasma concentrations. However, total phenytoin levels can be misleading in patients with factors such as low plasma albumin that alter the free (unbound) concentrations of phenytoin. Direct measurement of free phenytoin concentrations in plasma is more costly and time-consuming than determination of total phenytoin concentrations. An alternative to direct measurement of free phenytoin concentrations is use of the Sheiner-Tozer equation to calculate an adjusted phenytoin that corrects for the plasma albumin concentration. Innovative medical informatics tools to identify patients who would benefit from adjusted phenytoin calculations or from laboratory measurement of free phenytoin are needed to improve safety and efficacy of phenytoin pharmacotherapy. The electronic medical record for an academic medical center was searched for the time period from August 1, 1996 to November 30, 2010 for patients who had total phenytoin and free phenytoin determined on the same blood draw, and also a plasma albumin measurement within 7 days of the phenytoin measurements. The measured free phenytoin plasma concentration was used as the gold standard.</p> <p>Results</p> <p>In this study, the standard Sheiner-Tozer formula for calculating an estimated (adjusted) phenytoin level more frequently underestimates than overestimates the measured free phenytoin relative to the respective therapeutic ranges. Adjusted phenytoin concentrations provided superior classification of patients than total phenytoin measurements, particularly at low albumin concentrations. Albumin plasma concentrations up to 7 days prior to total phenytoin measurements can be used for adjusted phenytoin concentrations.</p> <p>Conclusions</p> <p>The results suggest that a measured free phenytoin should be obtained where possible to guide phenytoin dosing. If this is not feasible, then an adjusted phenytoin can supplement a total phenytoin concentration, particularly for patients with low plasma albumin.</p

    Knowledge and training in paediatric medical traumatic stress and trauma-informed care among emergency medical professionals in low- and middle-income countries

    Get PDF
    © 2018, © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Background: Provision of psychosocial care, in particular trauma-informed care, in the immediate aftermath of paediatric injury is a recommended strategy to minimize the risk of paediatric medical traumatic stress. Objective: To examine the knowledge of paediatric medical traumatic stress and perspectives on providing trauma-informed care among emergency staff working in low- and middle-income countries (LMICs). Method: Training status, knowledge of paediatric medical traumatic stress, attitudes towards incorporating psychosocial care and barriers experienced were assessed using an online self-report questionnaire. Respondents included 320 emergency staff from 58 LMICs. Data analyses included descriptive statistics, t-tests and multiple regression. Results: Participating emergency staff working in LMICs had a low level of knowledge of paediatric medical traumatic stress. Ninety-one percent of respondents had not received any training or education in paediatric medical traumatic stress, or trauma-informed care for injured children, while 94% of respondents indicated they wanted training in this area. Conclusions: There appears to be a need for training and education of emergency staff in LMICs regarding paediatric medical traumatic stress and trauma-informed care, in particular among staff working in comparatively lower income countries

    The Congenital Cataract-Linked G61C Mutation Destabilizes γD-Crystallin and Promotes Non-Native Aggregation

    Get PDF
    γD-crystallin is one of the major structural proteins in human eye lens. The solubility and stability of γD-crystallin play a crucial role in maintaining the optical properties of the lens during the life span of an individual. Previous study has shown that the inherited mutation G61C results in autosomal dominant congenital cataract. In this research, we studied the effects of the G61C mutation on γD-crystallin structure, stability and aggregation via biophysical methods. CD, intrinsic and extrinsic fluorescence spectroscopy indicated that the G61C mutation did not affect the native structure of γD-crystallin. The stability of γD-crystallin against heat- or GdnHCl-induced denaturation was significantly decreased by the mutation, while no influence was observed on the acid-induced unfolding. The mutation mainly affected the transition from the native state to the intermediate but not that from the intermediate to the unfolded or aggregated states. At high temperatures, both proteins were able to form aggregates, and the aggregation of the mutant was much more serious than the wild type protein at the same temperature. At body temperature and acidic conditions, the mutant was more prone to form amyloid-like fibrils. The aggregation-prone property of the mutant was not altered by the addition of reductive reagent. These results suggested that the decrease in protein stability followed by aggregation-prone property might be the major cause in the hereditary cataract induced by the G61C mutation

    A Pragmatic Approach Identifies a High Rate of Nonalcoholic Fatty Liver Disease With Advanced Fibrosis in Diabetes Clinics and At-Risk Populations in Primary Care

    Get PDF
    Noninvasive serum biomarkers (nonalcoholic fatty liver disease fibrosis score [NFS], fibrosis 4 score [FIB-4], or enhanced liver fibrosis [ELF] test) are recommended as first-line tools to determine the risk of advanced fibrosis in nonalcoholic fatty liver disease. We aimed to assess the utility of a pragmatic approach to screening for clinically significant fibrosis in primary care and diabetes clinics. We recruited 252 patients from an endocrine clinic or primary care facility. Anthropometric measurements, ELF test, ultrasound, and liver stiffness measurements (LSMs) were performed. Clinically significant fibrosis was defined as LSM ≥8.2 kPa or ELF ≥9.8. A subgroup of patients underwent liver biopsy (n = 48) or had imaging diagnostic of cirrhosis (n = 14). Patients were 57.3 ± 12.3 years old with a high prevalence of metabolic syndrome (84.5%), type 2 diabetes (82.5%), and body mass index (BMI) ≥40 kg/m2 (21.8%). LSM met quality criteria in 230 (91.3%) patients. NFS and FIB-4 combined had a high negative predictive value (90.0%) for excluding LSM ≥8.2 kPa. However, 84.1% of patients had indeterminate or high NFS or FIB-4 scores requiring further assessment. LSM ≥8.2 kPa and ELF ≥9.8 were present in 31.3% and 28.6% of patients, respectively. Following adjustment for age, BMI, sex, and presence of advanced fibrosis, older age was independently associated with ELF ≥9.8 (adjusted odds ratio, 1.14; 95% confidence interval, 1.06-1.24), whereas increasing BMI was independently associated with LSM ≥8.2 kPa (adjusted odds ratio, 1.15; 95% confidence interval, 1.01-1.30). Concordant LSM <8.2 kPa and ELF <9.8 and concordant LSM ≥8.2 kPa and ELF ≥9.8 had a high negative predictive value (91.7%) and positive predictive value (95.8%) for excluding and identifying clinically significant fibrosis, respectively. Conclusion: Simple scoring tools alone lack accuracy. LSM accuracy is influenced by severe obesity, whereas age impacts the ELF test. Further studies are required to confirm whether combining LSM and ELF may enhance accuracy and confidence in identifying clinically significant fibrosis. (Hepatology Communications 2018; 00:000-000)

    Induction of Epithelial Mesenchimal Transition and Vasculogenesis in the Lenses of Dbl Oncogene Transgenic Mice

    Get PDF
    BACKGROUND: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. RESULTS: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT), such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. CONCLUSION: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial tissue

    Identification and characterization of a rich population of CD34mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands. Further, gene expression analysis of CD34+ cells derived from fetal SMGs showed significant upregulation of genes involved in cellular adhesion, proliferation, branching, extracellular matrix remodeling and organ development. Moreover, CD34+ SMG cells exhibited elevated expression of genes encoding extracellular matrix, basement membrane proteins, and members of ERK, FGF and PDGF signaling pathways, which play key roles in glandular development, branching and homeostasis. In vitro CD34+ cell derived SG-MSCs revealed multilineage differentiation potential. Intraglandular transplantation of cultured MSCs in immunodeficient mice led to their engraftment in the injected and uninjected contralateral and ipsilateral glands. Engrafted cells could be localized to the stroma surrounding acini and ducts. In summary, our data show that CD34+ derived SG-MSCs could be a promising cell source for adoptive cell-based SG therapies, and bioengineering of artificial SGs

    Randomized phase III study (ADMYRE) of plitidepsin in combination with dexamethasone vs. dexamethasone alone in patients with relapsed/refractory multiple myeloma

    Get PDF
    The randomized phase III ADMYRE trial evaluated plitidepsin plus dexamethasone (DXM) versus DXM alone in patients with relapsed/refractory multiple myeloma after at least three but not more than six prior regimens, including at least bortezomib and lenalidomide or thalidomide. Patients were randomly assigned (2:1) to receive plitidepsin 5 mg/m2 on D1 and D15 plus DXM 40 mg on D1, D8, D15, and D22 (arm A, n = 171) or DXM 40 mg on D1, D8, D15, and D22 (arm B, n = 84) q4wk. The primary endpoint was progression-free survival (PFS). Median PFS without disease progression (PD) confirmation (IRC assessment) was 2.6 months (arm A) and 1.7 months (arm B) (HR = 0.650; p = 0.0054). Median PFS with PD confirmation (investigator’s assessment) was 3.8 months (arm A) and 1.9 months (arm B) (HR = 0.611; p = 0.0040). Median overall survival (OS, intention-to-treat analysis) was 11.6 months (arm A) and 8.9 months (arm B) (HR = 0.797; p = 0.1261). OS improvement favoring arm A was found when discounting a crossover effect (37 patients crossed over from arm B to arm A) (two-stage method; HR = 0.622; p = 0.0015). The most common grade 3/4 treatment-related adverse events (% of patients arm A/arm B) were fatigue (10.8%/1.2%), myalgia (5.4%/0%), and nausea (3.6%/1.2%), being usually transient and reversible. The safety profile does not overlap with the toxicity observed with other agents used in multiple myeloma. In conclusion, efficacy data, the reassuring safety profile, and the novel mechanism of action of plitidepsin suggest that this combination can be an alternative option in patients with relapsed/refractory multiple myeloma after at least three prior therapy lines

    A factor analysis of the SSQ (Speech, Spatial, and Qualities of Hearing Scale)

    Get PDF
    OBJECTIVE: The speech, spatial, and qualities of hearing questionnaire (SSQ) is a self-report test of auditory disability. The 49 items ask how well a listener would do in many complex listening situations illustrative of real life. The scores on the items are often combined into the three main sections or into 10 pragmatic subscales. We report here a factor analysis of the SSQ that we conducted to further investigate its statistical properties and to determine its structure. DESIGN: Statistical factor analysis of questionnaire data, using parallel analysis to determine the number of factors to retain, oblique rotation of factors, and a bootstrap method to estimate the confidence intervals. STUDY SAMPLE: 1220 people who have attended MRC IHR over the last decade. RESULTS: We found three clear factors, essentially corresponding to the three main sections of the SSQ. They are termed "speech understanding", "spatial perception", and "clarity, separation, and identification". Thirty-five of the SSQ questions were included in the three factors. There was partial evidence for a fourth factor, "effort and concentration", representing two more questions. CONCLUSIONS: These results aid in the interpretation and application of the SSQ and indicate potential methods for generating average scores

    Membrane potential and delta pH dependency of reverse electron transport-associated hydrogen peroxide production in brain and heart mitochondria

    Get PDF
    Succinate-driven reverse electron transport (RET) is one of the main sources of mitochondrial reactive oxygen species (mtROS) in ischemia-reperfusion injury. RET is dependent on mitochondrial membrane potential (Δψm) and transmembrane pH difference (ΔpH), components of the proton motive force (pmf); a decrease in Δψm and/or ΔpH inhibits RET. In this study we aimed to determine which component of the pmf displays the more dominant effect on RET-provoked ROS generation in isolated guinea pig brain and heart mitochondria respiring on succinate or α-glycerophosphate (α-GP). Δψm was detected via safranin fluorescence and a TPP+ electrode, the rate of H2O2 formation was measured by Amplex UltraRed, the intramitochondrial pH (pHin) was assessed via BCECF fluorescence. Ionophores were used to dissect the effects of the two components of pmf. The K+/H+ exchanger, nigericin lowered pHin and ΔpH, followed by a compensatory increase in Δψm that led to an augmented H2O2 production. Valinomycin, a K+ ionophore, at low [K+] increased ΔpH and pHin, decreased Δψm, which resulted in a decline in H2O2 formation. It was concluded that Δψm is dominant over ∆pH in modulating the succinate- and α-GP-evoked RET. The elevation of extramitochondrial pH was accompanied by an enhanced H2O2 release and a decreased ∆pH. This phenomenon reveals that from the pH component not ∆pH, but rather absolute value of pH has higher impact on the rate of mtROS formation. Minor decrease of Δψm might be applied as a therapeutic strategy to attenuate RET-driven ROS generation in ischemia-reperfusion injury
    corecore