182 research outputs found

    A Vision for Transdisciplinarity in Future Earth: Perspectives from Young Researchers

    Get PDF
    Meeting the demand for food, energy, and water as world population increases is a major goal for the food systems of the future. These future challenges, which are complex, multiscalar, and cross-sectoral in nature, require a food systems approach that recognizes the socio-ecological and socio-technical dimensions of food (Ericksen, 2008; Ingram, 2011; Rivera-Ferre, 2012). The United Nations' Future Earth Program aims to provide a new platform for consolidating the knowledge required for societies to transition to global sustainability (Future Earth Transition Team, 2012). In this paper, we explore how Future Earth could become a vehicle for inspiring the production of new research ideas and collaborations for sustainably transforming the future food system. We do this on the basis of a synthesis of views from 28 young (below 40 years old) food system scientists, representing five continents. Their expertise comes from disciplines including food engineering, agronomy, ecology, geography, psychology, public health, food politics, nutritional science, political science, sociology and sustainability science. This paper begins with an outline of the institutional framework of Future Earth and how it might support innovative transdisciplinary research on food systems, and the position of young scientists within this framework. Secondly, we outline the key insights expressed by the young scientists during the Food Futures Conference in Villa Vigoni, Italy, in April 2013, including the core research questions raised during the meeting as well as some of the challenges involved in realizing their research ambitions within their professional spheres

    Home parenteral nutrition with an omega-3-fatty-acid-enriched MCT/LCT lipid emulsion in patients with chronic intestinal failure (the HOME study):study protocol for a randomized, controlled, multicenter, international clinical trial

    Get PDF
    BACKGROUND: Home parenteral nutrition (HPN) is a life-preserving therapy for patients with chronic intestinal failure (CIF) indicated for patients who cannot achieve their nutritional requirements by enteral intake. Intravenously administered lipid emulsions (ILEs) are an essential component of HPN, providing energy and essential fatty acids, but can become a risk factor for intestinal-failure-associated liver disease (IFALD). In HPN patients, major effort is taken in the prevention of IFALD. Novel ILEs containing a proportion of omega-3 polyunsaturated fatty acids (n-3 PUFA) could be of benefit, but the data on the use of n-3 PUFA in HPN patients are still limited. METHODS/DESIGN: The HOME study is a prospective, randomized, controlled, double-blind, multicenter, international clinical trial conducted in European hospitals that treat HPN patients. A total of 160 patients (80 per group) will be randomly assigned to receive the n-3 PUFA-enriched medium/long-chain triglyceride (MCT/LCT) ILE (Lipidem/Lipoplus® 200 mg/ml, B. Braun Melsungen AG) or the MCT/LCT ILE (Lipofundin® MCT/LCT/Medialipide® 20%, B. Braun Melsungen AG) for a projected period of 8 weeks. The primary endpoint is the combined change of liver function parameters (total bilirubin, aspartate transaminase and alanine transaminase) from baseline to final visit. Secondary objectives are the further evaluation of the safety and tolerability as well as the efficacy of the ILEs. DISCUSSION: Currently, there are only very few randomized controlled trials (RCTs) investigating the use of ILEs in HPN, and there are very few data at all on the use of n-3 PUFAs. The working hypothesis is that n-3 PUFA-enriched ILE is safe and well-tolerated especially with regard to liver function in patients requiring HPN. The expected outcome is to provide reliable data to support this thesis thanks to a considerable number of CIF patients, consequently to broaden the present evidence on the use of ILEs in HPN. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03282955. Registered on 14 September 2017

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work?

    Get PDF
    Tourette Syndrome (TS) is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS), already widely utilized for Parkinson's disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in general positive. The reported interventions have, however, been variable, and there remain non-standardized selection criteria, various brain targets, differences in hardware, as well as variability in the programming parameters utilized. DBS centers perform only a handful of TS DBS cases each year, making large-scale outcomes difficult to study and to interpret. These limitations, coupled with the variable effect of surgery, and the overall small numbers of TS patients with DBS worldwide, have delayed regulatory agency approval (e.g., FDA and equivalent agencies around the world). The Tourette Association of America, in response to the worldwide need for a more organized and collaborative effort, launched an international TS DBS registry and database. The main goal of the project has been to share data, uncover best practices, improve outcomes, and to provide critical information to regulatory agencies. The international registry and database has improved the communication and collaboration among TS DBS centers worldwide. In this paper we will review some of the key operation details for the international TS DBS database and registry

    Microscale Petrographic, Trace Element, and Isotopic Constraints on Glauconite Diagenesis in Altered Sedimentary Sequences: Implications for Glauconite Geochronology

    Get PDF
    Glauconite is an authigenic clay mineral that is common in marine sedimentary successions. Dating of glauconite to determine the depositional age of sedimentary sequences has a long history but has fallen into disfavor due to the difficulty of obtaining “pure” glauconite separates. Recent advances in sedimentary petrography and reaction cell mass spectrometry permit rapid in situ Rb-Sr dating of carefully screened glauconite grains. However, glauconite remains susceptible to burial alteration so that successful application of in situ Rb-Sr glauconite geochronology requires improved, microscale constraints on the impact of postdepositional alteration on glauconite Rb-Sr systematics and articulation of robust criteria for identifying grains suitable for geochronology. Here, we address these questions by combining SEM-EDS mineral mapping, geochemical characterization, and in situ Rb-Sr dating of glauconite grains in partially altered lower Cambrian sedimentary sequences from the Arrowie and Amadeus basins in Australia. Our approach provides information at high spatial resolution, representing new insights into the interplay between source material, burial fluids, and diagenetic processes. Among the different glauconite classes, which we classify based on alteration and inclusion type, only the primary apatite-bearing “pristine” glauconite returns an age within the error of the expected stratigraphic age. We attribute the preservation of a depositional Rb-Sr age to the influence of Sr-rich, alteration-resistant apatite and the limited permeability of the clay-rich strata hosting these grains. We conclude that our combined petrographic–geochemical screening approach holds considerable potential for identifying the best preserved glauconite grains for in situ Rb-Sr geochronology.M. Rafiei, S. C. Löhr, O. Alard, A. Baldermann, J. Farkaš, and G. A. Broc

    Authigenic clay mineral constraints on spatiotemporal evolution of restricted, evaporitic conditions during deposition of the Ediacaran Doushantuo Formation

    Get PDF
    The carbonate-rich shelf facies of the Ediacaran Doushantuo Formation (South China) have produced a broad array of microfossil and isotope proxy records which underpin much of our understanding of environmental change and biospheric evolution during this key time period. Recent reports of locally abundant authigenic, Mg-rich saponite clay in the Yangtze Gorges Area hint at potentially widespread evaporitic conditions in a lagoonal setting. Despite the implications for interpretation of proxy records and the environmental setting of early metazoans, the spatiotemporal extent of restricted, evaporitic conditions across the Yangtze Block remains largely unexplored. Here we use mineralogical and petrographic techniques to document the spatial and stratigraphic distribution of authigenic clay minerals across seven sites, representing a transect from shallow proximal shelf to deep basinal settings. Our results demonstrate the widespread and persistent occurrence of authigenic saponite in proximal shelf settings, whereas talc is identified at more distal shelf sites, consistent with Mg-clay authigenesis in an evaporitic lagoon with spatially variable detrital aluminosilicate input. Slope and basinal sites contain no Mg-clays and are instead characterized by abundant authigenic illite, consistent with an open marine setting. Stratigraphically, illite was found in the basal cap carbonate and uppermost Doushantuo Formation, with Mg-clays only present in the interval in-between, suggesting gradual development of an extensive carbonate rimmed lagoon over the Yangtze shelf that restricted seawater exchange, followed by stronger marine influence due to erosion of the carbonate rim and subsequent marine transgression. We conclude that restricted, evaporitic conditions were much more expansive than previously assumed, potentially providing favorable conditions for the Doushantuo Biota. Further, the widespread presence of authigenic clays across the shelf supports the case for enhanced reverse weathering before the advent of biosilicification
    corecore