282 research outputs found

    Preparation and Characterization of Cerium (III) Doped Captopril Nanoparticles and Study of their Photoluminescence Properties

    Get PDF
    Indexación: Web of Science. DOAJ.In this research Ce3+ doped Captopril nanoparticles (Ce3+ doped CAP-NP) were prepared by a cold welding process and have been studied. Captopril may be applied in the treatment of hypertension and some types of congestive heart failure and for preventing kidney failure due to high blood pressure and diabetes. CAP-NP was synthesized by a cold welding process. The cerium nitrate was added at a ratio of 10% and the optical properties have been studied by photoluminescence (PL). The synthesized compounds were characterized by Fourier transform infrared spectroscopy. The size of CAP-NP was calculated by X-ray diffraction (XRD). The size of CAP-NP was in the range of 50 nm. Morphology of surface of synthesized nanoparticles was studied by scanning electron microscopy (SEM). Finally the luminescence properties of undoped and doped CAP-NP were compared. PL spectra from undoped CAP-NP show a strong pack in the range of 546 nm after doped cerium ion into the captopril appeared two bands at 680 and 357 nm, which is ascribed to the well-known 5d–4f emission band of the cerium.http://www.degruyter.com/view/j/chem.2016.14.issue-1/chem-2016-0008/chem-2016-0008.xm

    Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata.

    Get PDF
    Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions

    Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata

    Get PDF
    Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions

    Gap-induced reductions of evoked potentials in the auditory cortex: a possible objective marker for the presence of tinnitus in animals

    Get PDF
    Animal models of tinnitus are essential for determining the underlying mechanisms and testing pharmacotherapies. However, there is doubt over the validity of current behavioural methods for detecting tinnitus. Here, we applied a stimulus paradigm widely used in a behavioural test (gap-induced inhibition of the acoustic startle reflex GPIAS) while recording from the auditory cortex, and showed neural response changes that mirror those found in the behavioural tests. We implanted guinea pigs (GPs) with electrocorticographic (ECoG) arrays and recorded baseline auditory cortical responses to a startling stimulus. When a gap was inserted in otherwise continuous background noise prior to the startling stimulus, there was a clear reduction in the subsequent evoked response (termed gap-induced reductions in evoked potentials; GIREP), suggestive of a neural analogue of the GPIAS test. We then unilaterally exposed guinea pigs to narrowband noise (left ear; 8-10 kHz; 1 hour) at one of two different sound levels - either 105 dB SPL or 120 dB SPL – and recorded the same responses seven-to-ten weeks following the noise exposure. Significant deficits in GIREP were observed for all areas of the auditory cortex (AC) in the 120 dB-exposed GPs, but not in the 105 dB-exposed GPs. These deficits could not simply be accounted for by changes in response amplitudes. Furthermore, in the contralateral (right) caudal AC we observed a significant increase in evoked potential amplitudes across narrowband background frequencies in both 105 dB and 120 dB-exposed GPs. Taken in the context of the large body of literature that has used the behavioural test as a demonstration of the presence of tinnitus, these results are suggestive of objective neural correlates of the presence of noise-induced tinnitus and hyperacusis

    Agromorphological and nutritional quality profiles of fluted pumpkin (Telfairia occidentalis Hook F.) as influenced by cultivar, growing medium and soil amendment source

    Get PDF
    Fluted pumpkin (Telfairia occidentalis Hook F.) is popular as food and feed around the world. Sixteen treatments were developed from factorial combinations of three factors: cultivar (ugu elu and ugu ala), growing medium (garden soil (GS) and white sand (WS)), and soil amendment source (poultry manure, NPK, supergro and no amendment). A pot experiment was conducted to investigate the agromorphological and nutritional traits of fluted pumpkin obtained from the treatments. Fresh leaves were analyzed for crude protein, crude fibre, crude lipid, total ash, phytate and nitrate concentrations. Data were subjected to analysis of variance and principal component analysis. Mean plots were used to explain the effects of the three factors and profiling was done using the GYT biplot. There were significant (p≤0.05/0.01) mean squares for measured traits, suggesting the possibility of selection among the treatments. Plants in GS consistently out-performed those in WS for shoot weight, leaf length, and number of leaves per plant possibly due to greater availability of nutrients in the GS. Inconsistent patterns observed in the proximate concentrations of pumpkin from the 16 treatments showed the role of interaction among the three factors. Principal component analysis identified some traits as contributors to differences among the treatments which can be basis of selection. Treatments 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, and 16 might be useful to improve vegetative yield while 1, 3, 5, 7, and 9 could improve nutritional values of the fluted pumpkin

    Does listening to the sound of yourself chewing increase your enjoyment of food?

    Get PDF
    BACKGROUND: Anecdotal evidence suggests that listening to oneself eating results in a more pleasurable eating experience. Maximising the sensory experience of eating can result in increased oral intake and is potentially valuable in improving nutritional status in at-risk patients. OBJECTIVE: This pilot study investigates the association between listening to the sound of oneself eating and the consequences on enjoyment of eating. DESIGN: Prospective, randomized, controlled, cross-over trial of 10 fit, adult volunteers. Participants were timed eating a standardised amount of bread, and were randomized to eat in silence or whilst listening to their own amplified chewing and swallowing. Measurements of pulse and blood pressure were recorded throughout the procedure. Subjective pleasure scores were documented and the procedure repeated in the alternate study arm. RESULTS: There was no significant relationship demonstrated between listening to oneself chewing and the enjoyment of eating. CONCLUSION: Although this small pilot study was unable to demonstrate a significant relationship between listening to oneself chewing and enjoyment of eating, other evidence suggests that distraction techniques have a beneficial effect on dietary intake. Such techniques can be applied in a clinical setting and further work in this area has valuable potential

    Superradiance and Periodic 6.7 GHz Methanol Flaring in G22.356+0.066

    Full text link
    We present a comprehensive analysis of the periodic flares observed in the 6.7 GHz methanol transition in G22.356+0.066, utilizing the Maxwell-Bloch equations (MBEs) as a framework to model these phenomena. By solving the one-dimensional MBEs, we describe the behavior of both the quasi-steady-state maser and transient superradiance regimes. Our findings indicate that the observed periodic flares, with varying timescales across different velocities, are consistent with the characteristics of Dicke\u27s superradiance, triggered by a common radiative pump in regions of varying inverted column densities. This work provides new insights into the physical processes governing variability in maser-hosting regions and underscores the significance of superradiance as a powerful radiation mechanism in astrophysical environments.5 pages, 7 figure

    Cochlear synaptopathy following noise exposure in Guinea pigs: Its electrophysiological and histological assessments

    Get PDF
    Exposure to high level of noise, may cause the permanent cochlear synaptic degeneration. In present study, a model of noise induced cochlear synaptopathy was established and the electrophysiological and histological metrics for its assessment was designed. 6 Guinea pigs were subjected to a synaptopathic noise (octave band of 4 kHz at 104 dB SPL, for 2-h). The amplitude growth curve of Auditory Brainstem Response (ABR) wave-I and wave-III latency shift in presence of noise were calculated. These indexes were considered in pre-exposure, 1 day post exposure (1DPE), 1 week post exposure (1WPE) and 1 month post exposure (1MPE) to noise. Finally, the samples were histologically analyzed. ABR wave-I amplitude was different between pre and 1DPE (p-value � 0.05). However, at 1WPE, it was recovered at low intensities but at 70 dB SPL and above, the differences persisted even till 1MPE. In masked ABR, the latency shift of wave-III was different between pre and 3 post exposure assessments (p-value � 0.05). Electro-microscopic analysis confirmed the synaptic degeneration, as the ribbons were larger than normal, hollow inside, and spherical and irregular in shape, also, the post synaptic density was abnormally thick and missed its flat orientation. These data revealed that noise at level below that can produce permanent hearing loss, can incur synaptic injury. So, noise is considered to be more damaging than previously thought. Accordingly, designing tools for clinical assessment of synaptopathy is beneficial in comprehensive auditory evaluation of those with history of noise exposure and also in hearing protection planning. © 2020 Tech Science Press. All rights reserved

    Cardiac abnormalities due to multisystem inflammatory syndrome temporally associated with Covid-19 among children: A systematic review and meta-analysis

    Get PDF
    Background: Cardiac defects due to multisystem inflammatory syndrome in children (MIS-C) have been abundantly reported leading high morbidity among children affected by Covid-19. We aimed to systematically assess the incidence of such cardiac abnormalities due to MIS-C in children suffering Covid-19. Methods: The manuscript databases including Medline, Web of knowledge, Google scholar, Scopus, and Cochrane were deeply searched by the two blinded investigators for all eligible studies based on the relevant keywords. The risk of bias for each study was assessed according to QUADAS-2 tool. Statistical analysis was performed using the Comprehensive Meta Analysis (CMA) software. Results: In final, 21 articles (including 916 children) were eligible for the final analysis that all yielded good quality and none of the citation was determined to have high risk of bias. Considering studies focusing different cardiac abnormalities related to MIS-C yielded a pooled prevalence of 38.0 for significant left ventricular dysfunction, 20.0 for coronary aneurism or dilatation, 28.1 for ECG abnormalities or cardiac arrhythmias, 33.3 for raised serum troponin level and 43.6 for raised proBNP/BNP level. Conclusion: Although cardiac abnormalities among children suffering Covid-19 are uncommon, in the context of the MIS-C can be common and therefore potentially serious and life threatening. © 202

    Clinical Utilization Pattern of Liquid Biopsies (LB) to Detect Actionable Driver Mutations, Guide Treatment Decisions and Monitor Disease Burden During Treatment of 33 Metastatic Colorectal Cancer (mCRC) Patients (pts) at a Fox Chase Cancer Center GI Oncology Subspecialty Clinic

    Get PDF
    Background: Liquid biopsy (LB) captures dynamic genomic alterations (alts) across metastatic colorectal cancer (mCRC) therapy and may complement tissue biopsy (TB). We sought to describe the utility of LB and better understand mCRC biology during therapy.Methods: Thirty-three patients (pts) with mCRC underwent LB. We used permutation-based t-tests to assess associations between alts, and clinical variables and used Kendall's tau to measure correlations.Results: Of 33 pts, 15 were women; 22 had colon, and the rest rectal cancer. Pts received a median of two lines of therapy before LB. Nineteen pts had limited testing on TB (RAS/RAF/TP53/APC), 11 extended NGS, and 3 no TB. Maxpct and alts correlated with CEA (p < 0.001, respectively). In 3/5 pts with serial LB, CEA correlated with maxpct trend, and CT tumor burden. In 6 pts, mutant RAS was seen in LB and not TB; 5/6 had received anti-EGFR therapy prior to LB, suggesting RAS alts developed post-therapy. In two pts RAS-mutated by TB, no RAS alts were detected on LB; these pts had low disease burden on CT at time of LB that also did not reveal APC or TP53 alts. In six patients who were KRAS wt based on TB, post anti-EGFR LB revealed subclonal KRAS mutations, likely a treatment effect. The median number of alts was higher post anti-EGFR LB (n = 12) vs. anti-EGFR naïve LB (n = 22) (9.5 vs. 5.5, p = 0.059) but not statistically significant. More alts were also noted in post anti-EGFR therapy LB vs. KRAS wt anti-EGFR-naïve LB (n = 6) (9.5 vs. 5) among patients with KRAS wild-type tumors, although the difference was not significant (p = 0.182).Conclusions: LB across mCRC therapy detects driver mutations, monitors disease burden, and identifies sub-clonal alts that reflect drug resistance, tumor evolution, and heterogeneity. Interpretation of LB results is impacted by clinical context
    corecore