266 research outputs found

    The Bourke lock and weir

    Get PDF

    Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack

    Get PDF
    This paper presents a simplified zero-dimensional mathematical model for a self-humidifying proton exchange membrane (PEM) fuel cell stack of 1 kW. The model incorporates major electric and thermodynamic variables and parameters involved in the operation of the PEM fuel cell under different operational conditions. Influence of each of these parameters and variables upon the operation and the performance of the PEM fuel cell are investigated. The mathematical equations are modeled by using Matlab–Simulink tools in order to simulate the operation of the developed model with a commercial available 1 kW horizon PEM fuel cell stack (H-1000), which is used for the purposes of model validation and tuning of the developed model. The model can be extrapolated to higher wattage fuel cells of similar arrangements. New equation is presented to determine the impact of using air to supply the PEM fuel cell instead of pure oxygen upon the concentration losses and the output voltage when useful current is drawn from it

    A view on the internal consistency of linear source identification for I.C. engine exhaust noise prediction

    Full text link
    [EN] Considerable efforts have been devoted to the development of predictive models that, from a certain set of data related to an engine, and making use of an adequate representation of the effect of the silencing elements, provide an estimate of the exhaust noise emitted. Such models should allow for the consideration of the engine and its interaction with the exhaust system. This is properly achieved by gas-dynamic models, which are becoming the standard, but linear models solved in the frequency domain and representing the engine as a linear time-invariant source may still play a role in exhaust system design, as the engine is treated as a black box. Such a representation is very attractive for engine manufacturers, since it gives the possibility to provide data on the engine without any possibility to trace back to its real characteristics. In order to provide additional criteria for the suitability of the application of a linear time-invariant representation to an engine exhaust, in this paper a multi-load method has been used to extract source characteristics from gas-dynamic simulation results. The details of the method, in which the resulting over-determined system is solved by fitting the values of the source parameters in a least-squares sense, are described, and different approaches are used in order to check the internal consistency of the source representation: the identification of pressure and velocity sources, and the application of the least-squares criterion to the modulus or to the real and imaginary parts separately. In particular, eight different determinations of the source impedance are obtained and, considering the application of the formalism to an engine exhaust, the differences observed provide a suitable criterion for the evaluation of the suitability of the representation and of the particular set of loads chosen.Macian Martinez, V.; Torregrosa Huguet, AJ.; Broatch, A.; Niven, P.; Amphlett, S. (2013). A view on the internal consistency of linear source identification for I.C. engine exhaust noise prediction. Mathematical and Computer Modelling. 57(7-8):1867-1875. doi:10.1016/j.mcm.2011.12.018S18671875577-

    The effect of contaminants on the application of polyamine functionalised ion exchange resins for uranium extraction from sulfate based mining process waters

    Get PDF
    Three in-house produced polyamine functionalised ion exchange resins and Purolite S985 (a commercial ion exchange resin) have been assessed for their ability to extract UO22+ from a variety of aqueous matrices applicable to current and potential future uranium mining processes. The uptake of common contaminant species in uranium processing liquors at variable acid concentrations has been assessed, with Al3+ and MoO42− showing the most extraction, with AsO43−, Eu3+ and Fe3+ showing extractions >10% at low [H+]. Extraction of MoO42−, AsO43−, Eu3+ and Fe3+ was seen to decrease with increasing [H+]. The impact of increasing [Cl−] on UO22+ and Fe3+ extraction has been determined. Fe3+ showed low extractions by all resins, with no dependence on [Cl−]. In contrast, increasing suppression of UO22+ uptake was seen with increasing [Cl−] up to 80 g L−1, with extraction remaining constant beyond this [Cl−]. At high [Cl−] (>50 g L−1) Purolite S985 was seen to remove UO22+ from solution more effectively than all synthesised polyamine resins. The presence of Fe3+ in solution was seen to suppress UO22+ uptake by around 10% when [Fe3+]/[UO22+] increased from 0 to 2. Fe3+ extraction by all studied resins was promoted by the presence of UO22+ in solution. This was most prevalent with Purolite S985, with an extraction of 30% for [Fe3+]/[UO22+] = 2 by Purolite S985. All resins were tested using a process water from a uranium mine and have shown an ability to selectively extract UO22+ from such solutions, with the best synthetic resin recovering 15.7% more uranium than Purolite S985

    Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: Chelation vs. anion exchange

    Get PDF
    X-ray absorption fine structure analysis has been successfully used to determine the coordination environment and therefore uptake mechanism towards the uranyl cation for a selection of commercially available ion exchange resins in non-saline and saline conditions ([Cl−] = 22.7 g L−1, 0.64 M) similar to those found in sea water. The resins tested were Purolite S985, S910 and S957, Dowex M4195, Ps-EDA, Ps-DETA and Ps-PEHA, which contain polyamine, amidoxime, mixed sulfonic/phosphonic acid, bispicolylamine, ethylenediamine, diethylenetriamine and pentaethylenehexamine functional groups, respectively. Purolite S910 and S957 were both found to extract the uranyl cation through a chelation mechanism. The uranium coordination environment on uranyl loaded Purolite S910 was found to be either tetra- or hexa-coordinate in the equatorial plane, with a 2:1 ratio of amidoxime:uranium in the fit suggesting either monodentate or η2 coordination by two amidoxime groups. The uranium environment for uranyl loaded Purolite S957 was found to be tetra-coordinate in the equatorial plane, with both sulfonic and phosphonic acid groups being involved in sorption. The presence of chloride in the loading solution had no effect on the uranyl coordination environment observed on any of the resins. In contrast, Dowex M4195, Purolite S985, Ps-EDA, Ps-DETA and Ps-PEHA exhibited an anion exchange mechanism for uranyl uptake as the corresponding extended X-ray absorption fine structure (EXAFS) data best fit a [UO2(SO4)3]4− structure

    Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells

    Get PDF
    We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP) into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4) ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3−) in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC) was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency

    Remediation of radioiodine using polyamine anion exchange resins

    Get PDF
    Two weak base anion exchange resins, Lewatit A365 and Purolite MTS9850, have been tested for the removal of aqueous iodide from conditions simulating nuclear waste reprocessing streams. pH variation and relevant co-contaminant addition (nitrate, molybdate and iodine) allowed for assessment of iodide extraction behaviour of each resin. Isotherm experiments were performed and maximum uptake capacities obtained exceed current industrial adsorbents, such as silver-impregnated zeolites. Maximum loading capacities, determined by Dubinin–Radushkevich isotherm, were 761 ± 14 mg g−1 for MTS9850 and 589 ± 15 mg g−1 for A365. Uptake for both resins was significantly suppressed by nitrate and molybdate ions. The presence of dissolved iodine in the raffinate however, was found to increase iodide uptake. This was explained by characterisation of the spent resin surface by infrared and Raman spectroscopy, which determined the presence of triiodide, indicating charge-transfer complex formation on the surface. Dynamic studies assessed the effect of co-contaminants on iodide uptake in a column environment. Data was fitted to three dynamic models, with the Dose-Response model providing the best description of breakthrough. In all cases iodide breakthrough was accelerated, indicating suppression of uptake, but capacity was still significant
    • …
    corecore