205 research outputs found

    Electroweak corrections to top-quark pair production in quark--antiquark annihilation

    Full text link
    Top-quark physics plays an important role at hadron colliders such as the Tevatron at Fermilab or the LHC at CERN. Given the planned precision at these colliders, precise theoretical predictions are required. In this paper we present the complete electroweak corrections to QCD-induced top-quark pair production in quark--antiquark annihilation. In particular we provide compact analytic expressions for the differential partonic cross section, which will be useful for further theoretical investigations

    Radiolysis of NaCl at high and low temperatures: development of size distribution of bubbles and colloids

    Get PDF
    New experimental results are presented on low temperature irradiation (18 °C) of rock-salt samples which had been exposed to initial doses up to 320 GRad at 100 °C. Differential scanning calorimetry (DSC) shows that the latent heat of melting (LHM) of sodium colloids decreases during subsequent low-temperature irradiation, whereas the stored energy (SE) increases slowly, indicating that the process of radiolysis continues. The decrease of the LHM is due to dissolution of large colloids, because the intensities of the melting peaks decrease during the second stage irradiation at low temperature. The model is formulated to describe the nucleation kinetics and the evolution of the size distribution of chlorine precipitates and sodium colloids in NaCl under high dose irradiation. It is shown that the mechanism of dissolution of large Na colloids during low temperature irradiation can be related to melting of sodium colloids.

    Proposal of an FTIR Methodology to Monitor Oxidation Level in Used Engine Oils: Effects of Thermal Degradation and Fuel Dilution

    Full text link
    This article describes a procedure, based on ASTM standards D7214 and E2412, that has been defined to improve quantification of oil oxidation in used engine oils. Taking into account typical problems that can be found in this type of sample, including thermal oxidation and fuel dilution, Fourier transform infrared (FTIR) spectra were analyzed also considering the effect of the oil formulation. Two zones were considered inside the typical wave number range for quantification of oxidation, where those problems can be detected and assessed more easily: zone A between 1725 and 1650 cm-1, where the main oxidation products, such as aldehydes, carboxylic acids, and ketones, occur due to thermal degradation of the oil; and zone B between 1770 and 1725 cm-1, where esters due to potential biodiesel dilution problems are detected. Copyright © Society of Tribologists and Lubrication Engineers.The authors are grateful for Spanish Grant TRA2008-06508 (GLAUTO) from the Ministerio de Ciencia e Innovacion-Direccion General de Investigacion for supporting this work.Macian Martinez, V.; Tormos, B.; Gomez Estrada, YA.; Salavert Fernández, JM. (2012). Proposal of an FTIR Methodology to Monitor Oxidation Level in Used Engine Oils: Effects of Thermal Degradation and Fuel Dilution. Tribology Transactions. 55(6):872-882. https://doi.org/10.1080/10402004.2012.721921S87288255

    Googling the brain: discovering hierarchical and asymmetric network structures, with applications in neuroscience

    Get PDF
    Hierarchical organisation is a common feature of many directed networks arising in nature and technology. For example, a well-defined message-passing framework based on managerial status typically exists in a business organisation. However, in many real-world networks such patterns of hierarchy are unlikely to be quite so transparent. Due to the nature in which empirical data is collated the nodes will often be ordered so as to obscure any underlying structure. In addition, the possibility of even a small number of links violating any overall “chain of command” makes the determination of such structures extremely challenging. Here we address the issue of how to reorder a directed network in order to reveal this type of hierarchy. In doing so we also look at the task of quantifying the level of hierarchy, given a particular node ordering. We look at a variety of approaches. Using ideas from the graph Laplacian literature, we show that a relevant discrete optimization problem leads to a natural hierarchical node ranking. We also show that this ranking arises via a maximum likelihood problem associated with a new range-dependent hierarchical random graph model. This random graph insight allows us to compute a likelihood ratio that quantifies the overall tendency for a given network to be hierarchical. We also develop a generalization of this node ordering algorithm based on the combinatorics of directed walks. In passing, we note that Google’s PageRank algorithm tackles a closely related problem, and may also be motivated from a combinatoric, walk-counting viewpoint. We illustrate the performance of the resulting algorithms on synthetic network data, and on a real-world network from neuroscience where results may be validated biologically

    Understanding edge-connectivity in the Internet through core-decomposition

    Get PDF
    Internet is a complex network composed by several networks: the Autonomous Systems, each one designed to transport information efficiently. Routing protocols aim to find paths between nodes whenever it is possible (i.e., the network is not partitioned), or to find paths verifying specific constraints (e.g., a certain QoS is required). As connectivity is a measure related to both of them (partitions and selected paths) this work provides a formal lower bound to it based on core-decomposition, under certain conditions, and low complexity algorithms to find it. We apply them to analyze maps obtained from the prominent Internet mapping projects, using the LaNet-vi open-source software for its visualization

    Some Applications of Thermal Field Theory to Quark-Gluon Plasma

    Full text link
    The lecture provides a brief introduction of thermal field theory within imaginary time formalism, the Hard Thermal Loop perturbation theory and some of its application to the physics of the quark-gluon plasma, possibly created in relativistic heavy ion collisions.Comment: 17 pages, 12 figures : Lectures given in "Workshop on Hadron Physics" during March 7-17, 2005, Puri, Indi

    Amicable pairs and aliquot cycles for elliptic curves

    Full text link
    An amicable pair for an elliptic curve E/Q is a pair of primes (p,q) of good reduction for E satisfying #E(F_p) = q and #E(F_q) = p. In this paper we study elliptic amicable pairs and analogously defined longer elliptic aliquot cycles. We show that there exist elliptic curves with arbitrarily long aliqout cycles, but that CM elliptic curves (with j not 0) have no aliqout cycles of length greater than two. We give conjectural formulas for the frequency of amicable pairs. For CM curves, the derivation of precise conjectural formulas involves a detailed analysis of the values of the Grossencharacter evaluated at a prime ideal P in End(E) having the property that #E(F_P) is prime. This is especially intricate for the family of curves with j = 0.Comment: 53 page

    Numerical evidence toward a 2-adic equivariant ''Main Conjecture''

    No full text
    International audienceWe test a conjectural non abelian refinement of the classical 2-adic Main Conjecture of Iwasawa theory. In the first part, we show how, in the special case that we study, the validity of this refinement is equivalent to a congruence condition on the coefficients of some power series. Then, in the second part, we explain how to compute the first coefficients of this power series and thus numerically check the conjecture in that setting

    Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams

    Get PDF
    The aim of this paper is to compare the flexural performance of reinforced concrete (RC) beams strengthened with textile-reinforced mortar (TRM) and fibre-reinforced polymers (FRP). The investigated parameters included the strengthening material, namely TRM or FRP; the number of TRM/FRP layers; the textile surface condition (coated and uncoated); the textile fibre material (carbon, coated basalt or glass fibres); and the end-anchorage system of the external reinforcement. Thirteen RC beams were fabricated, strengthened and tested in four-point bending. One beam served as control specimen, seven beams strengthened with TRM, and five with FRP. It was mainly found that: (a) TRM was generally inferior to FRP in enhancing the flexural capacity of RC beams, with the effectiveness ratio between the two systems varying from 0.46 to 0.80, depending on the parameters examined, (b) by tripling the number of TRM layers (from one to three), the TRM versus FRP effectiveness ratio was almost doubled, (c) providing coating to the dry textile enhanced the TRM effectiveness and altered the failure mode; (d) different textile materials, having approximately same axial stiffness, resulted in different flexural capacity increases; and (e) providing end-anchorage had a limited effect on the performance of TRM-retrofitted beams. Finally, a simple formula proposed by fib Model Code 2010 for FRP reinforcement was used to predict the mean debonding stress developed in the TRM reinforcement. It was found that this formula is in a good agreement with the average stress calculated based on the experimental results when failure was similar to FRP-strengthened beams
    corecore