89 research outputs found

    The role of the magnetic field in the fragmentation process: the case of G14.225-0.506

    Full text link
    B-fields are predicted to play a role in the formation of filamentary structures and their fragmentation process. We aim at investigating the role of the B-field in the process of core fragmentation toward the hub-filament systems in the IRDC G14.2, which present different fragmentation level. We performed observations of the thermal dust polarization at 350 {\mu}m using the CSO toward the hubs. We applied the polarization--intensity-gradient method to estimate the significance of the B-field over the G-force. The B-field in Hub-N shows a uniform structure along the E-W orientation, perpendicular to the major axis of the hub-filament system. The I-gradient in Hub-N displays a local minimum coinciding with the dust core MM1a detected with interferometric observations. The B-field orientation is perturbed when approaching the dust core. Hub-S shows 2 local minima, reflecting the bimodal distribution of the B-field. In Hub-N, both E and W of the hub-filament system, the I-gradient and the B-field are parallel whereas they tend to be perpendicular when penetrating the filaments and hub. The analysis of the {\delta}- and {\Sigma} B-maps indicate that, the B-field cannot prevent the collapse, suggesting that the B-field is initially dragged by the infalling motion and aligned with it, or is channeling material toward the central ridge from both sides. Values of {\Sigma} B > 1 are found toward a N-S ridge encompassing the dust emission peak, indicating that in this region B-field dominates over G-force, or that with the current angular resolution we cannot resolve an hypothetical more complex structure. We estimated the B-field strength, the MtF ratio and the A-M number, and found differences between the 2 hubs. The different levels of fragmentation observed in these 2 hubs could arise from the differences in the B-field properties rather than from different intensity of the G-field.Comment: 14 pages, 9 figure

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Genome Sequence Analysis of Dengue Virus 1 Isolated in Key West, Florida

    Get PDF
    Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs

    The association between Toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLR) are key innate immunity receptors participating in an immune response. Growing evidence suggests that mutations of TLR2/TLR9 gene are associated with the progress of cancers. The present study aimed to investigate the temporal relationship of single nucleotide polymorphisms (SNP) of TLR2/TLR9 and the risk of hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>In this single center-based case-control study, SNaPshot method was used to genotype sequence variants of TLR2 and TLR9 in 211 patients with HCC and 232 subjects as controls.</p> <p>Results</p> <p>Two synonymous SNPs in the exon of TLR2 were closely associated with risk of HCC. Compared with those carrying wild-type homozygous genotypes (T/T), risk of HCC decreased significantly in individuals carrying the heterozygous genotypes (C/T) of the rs3804099 (adjusted odds ratio (OR), 0.493, 95% CI 0.331 - 0.736, <it>P </it>< 0.01) and rs3804100 (adjusted OR, 0.509, 95% CI 0.342 - 0.759, <it>P </it>< 0.01). There was no significant association found in two TLR9 SNPs concerning the risk of HCC. The haplotype TT for TLR2 was associated significantly with the decreased risk of HCC (OR 0.524, 95% CI 0.394 - 0.697, <it>P </it>= 0.000). Inversely, the risk of HCC increased significantly in patients with the haplotype CC (OR 2.743, 95% CI 1.915 - 3.930, <it>P </it>= 0.000).</p> <p>Conclusions</p> <p>These results suggested that TLR2 rs3804099 C/T and rs3804100 C/T polymorphisms were closely associated with HCC. In addition, the haplotypes composed of these two TLR2 synonymous SNPs have stronger effects on the susceptibility of HCC.</p

    A systematic review of methods for increasing vegetable consumption in early childhood

    Get PDF
    PURPOSE OF REVIEW: This study aims to synthesise the body of research investigating methods for increasing vegetable consumption in 2- to 5-year-old children, while offering advice for practitioners. RECENT FINDINGS: Repeated exposure is a well-supported method for increasing vegetable consumption in early childhood and may be enhanced with the inclusion of non-food rewards to incentivise tasting. Peer models appear particularly effective for increasing 2-5-year-olds' vegetable consumption. There is little evidence for the effectiveness of food adaptations (e.g. flavour-nutrient learning) for increasing general vegetable intake among this age group, although they show some promise with bitter vegetables. SUMMARY: This review suggests that practitioners may want to focus their advice to parents around strategies such as repeated exposure, as well as the potential benefits of modelling and incentivising tasting with non-food rewards. Intervention duration varies greatly, and considerations need to be made for how this impacts on success

    A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies

    Get PDF
    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites
    corecore