116 research outputs found

    Activation of the hsp70 promoter by environmental inorganic and organic chemicals: relationships with cytotoxicity and lipophilicity.

    Get PDF
    International audienceStress proteins (heat shock proteins, HSPs) have been proposed as general markers of cellular aggression and their use for environmental monitoring is often suggested. The aim of this work was to study the potency of various environmentally relevant organic and inorganic chemicals to induce the expression of the HSP70 marker. For this purpose, we used an established HeLa cell line containing the chloramphenicol acetyl transferase (CAT) gene under the control of the hsp70 promoter. The screening of three metallic and 15 organic chemicals revealed differences in their capacities to induce the hsp70 promoter. The three metals tested (cadmium, zinc and mercury) were able to induce a stress response. Some organochlorine compounds (chlorophenol derivatives, tetrachlorohydroquinone, 3, 4-dichloroaniline, ethyl parathion and 1-chloro-2,4-dinitrobenzene) induced a response, whereas other common halogenated pesticides or aromatic hydrocarbons (e.g. benzo(a)pyrene, 2, 4-dichlorophenoxyacetic acid, endosulfan, diuron, 4-nonylphenol) did not. The potency to induce hsp70 was significantly correlated to the octanol-water partition coefficient (log K(ow)) of the inducing chemicals, except for 1-chloro-2,4-dinitrobenzene and ethyl parathion. Cytotoxicity assays run in parallel to the induction measurements revealed that the three metals were effective at non cytotoxic doses whereas all organic compounds, except tetrachlorohydroquinone and 1-chloro-2,4-dinitrobenzene, induced the promoter at cytotoxic doses. These results suggest that hsp70 is induced by different mechanisms of toxicity. We propose that this model can be used in mechanistic studies for the detection of toxic effects of certain pollutants

    Biochemical effects of nonyphenol polyethoxylate adjuvant, Diquat herbicide and their mixture on the three-spined stickleback (Gasterosteus aculeatus L.)

    Get PDF
    This study examined the response of 7-ethoxyresorufine-O-deethylase (EROD), glutathioneS-transferase (GST), glutathione peroxidase (GPx), glutathione content (GSH), level of thiobarbituric acid reactive compounds (TBARS) and circulating vitellogenin, in three-spined sticklebacks after 21 days of exposure to Diquat herbicide, commercial nonylphenol polyethoxylate (NPEO) adjuvant and mixture between Diquat and adjuvant. The results showed that adjuvant exerted more important oxidative effects than Diquat and that mixture effects were unlike to single additivity. This study argues for ecotoxicological risk assessment of adjuvants and mixtures of adjuvants and pesticides

    Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes.

    Get PDF
    Pharmaceuticals are found in the aquatic environment but their potential effects on non-target species like fish remain unknown. This in vitro study is a first approach in the toxicity assessment of human drugs on fish. Nine pharmaceuticals were tested on two fish hepatocyte models: primary cultures of rainbow trout hepatocytes (PRTH) and PLHC-1 fish cell line. Cell viability, interaction with cytochrome P450 1A (CYP1A) enzyme and oxidative stress were assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide tetrazolium (MTT), 7-ethoxyresorufin-o-deethylase (EROD) and dichlorofluorescein (DCFH-DA) assays, respectively. The tested drugs were clofibrate (CF), fenofibrate (FF), carbamazepine (CBZ), fluoxetine (FX), diclofenac (DiCF), propranolol (POH), sulfamethoxazole (SFX), amoxicillin (AMX) and gadolinium chloride (GdCl(3)). All substances were cytotoxic, except AMX at concentration up to 500 microM. The calculated MTT EC(50) values ranged from 2 microM (CF) to 651 microM (CBZ) in PLHC-1, and from 53 microM (FF) to 962 microM (GdCl(3)) in PRTH. CF, FF, and FX were the most cytotoxic drugs and induced oxidative stress before being cytotoxic. Compared to hepatocytes from human and dog, fish hepatocytes seemed to be more susceptible to the peroxisome proliferators (PPs) CF and FF. In PLHC-1 cells none of the tested drugs induced the EROD activity whereas POH appeared as a weak EROD inducer in PRTH. Moreover, in PRTH, SFX, DiCF, CBZ and to a lesser extend, FF and CF inhibited the basal EROD activity at clearly sublethal concentrations which may be of concern at the biological and chemical levels in a multipollution context

    A stable fish reporter cell line to study estrogen receptor transactivation by environmental (xeno)estrogens.

    Get PDF
    International audienceCross-species differences between human and fish estrogen receptor (ER) binding by environmental chemicals have been reported. To study ER transactivation in a fish cellular context, we stably co-transfected the PLHC-1 fish hepatoma cell line with a rainbow trout estrogen receptor (rtER) and the luciferase reporter gene driven by an estrogen response element (ERE). This new cell model, called PELN-rtER (for PLHC-1-ERE-Luciferase-Neomycin), responded to 17beta-estradiol (E2) in a both concentration- and temperature-dependent manner, as well as to environmental ER ligands from different chemical classes: natural and synthetic estrogens, zearalenone metabolites, genistein, alkyphenoles and benzophenone derivatives. The comparison with other in vitro models, i.e. human reporter cell lines (HELN-rtER, MELN) and vitellogenin induction in primary cultures of rainbow trout hepatocytes, showed an overall higher sensitivity of the human cells for a majority of ligands, except for benzophenone derivatives which were active at similar or lower concentrations in fish cells, suggesting species-specificity for these substances. Correlation analyses suggest that the fish cell line is closer to the trout hepatocyte than to the human cell context, and could serve as a relevant mechanistic tool to study ER activation in fish hepatic cellular context

    Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers.

    Get PDF
    International audienceA comprehensive evaluation of organic contamination was performed in sediments sampled in two reference and three impacted small streams where endocrine disruptive (ED) effects in fish have been evidenced. The approach combined quantitative chemical analyses of more than 50 ED chemicals (EDCs) and a battery of in vitro bioassays allowing the quantification of receptor-mediated activities, namely estrogen (ER), androgen (AR), dioxin (AhR) and pregnane X (PXR) receptors. At the most impacted sites, chemical analyses showed the presence of natural estrogens, organochlorine pesticides, parabens, polycyclic aromatic hydrocarbons (16 PAHs), bisphenol A and alkylphenols, while synthetic steroids, myco-estrogens and phyto-estrogens were not detected. Determination of toxic-equivalent amounts showed that 28-96% of estrogenic activities in bioassays (0.2-6.3 ng/g 17beta-estradiol equivalents) were explained by 17beta-estradiol and estrone. PAHs were major contributors (20-60%) to the total dioxin-like activities. Interestingly, high PXR and (anti)AR activities were detected; however, the targeted analysed compounds could not explain the measured biological activities. This study highlighted the presence of multiple organic EDCs in French river sediments subjected to mixed diffuse pollution, and argues for the need to further identify AR and PXR active compounds in the aquatic environment

    Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors.

    Get PDF
    International audience: Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology

    Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    Get PDF
    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis

    Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays.

    Get PDF
    International audienceBenzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hERalpha), and there has been no comprehensive analysis of their potency in a system allowing comparison between hERalpha and hERbeta activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fish origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hERalpha and hERbeta agonists (BP2>THB>BP1) and displayed a stronger activation of hERbeta compared with hERalpha, the opposite effect to that of estradiol (E2). Unlike E2, BPs were more active in rainbow trout ERalpha (rtERalpha) than in hERalpha assay. All four BP derivatives showed anti-androgenic activity (THB>BP2>BP1>BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ERbeta versus ERalpha activation, support further investigation of their role as endocrine disrupters in humans and wildlife

    In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal

    Get PDF
    International audiencePregnant rats were daily whole-body exposed or sham-exposed to a Wi-Fi signal in a free-running reverberation chamber at 0, 0.08, 0.4, and 4 W/kg for 2 h during the last 2 weeks of gestation (5 days/week). Following this in utero exposure, the pups were divided into two groups and 1 group continued exposure for 5 weeks after birth. Several brain areas were examined for gliosis and apoptotic cells. Comparison among sham and exposed groups revealed no significant differences, suggesting that in utero and post-natal exposure to Wi-Fi did not damage the brains of the young rats

    Anti-androgens act jointly in suppressing spiggin concentrations in androgen-primed female three-spined sticklebacks - Prediction of combined effects by concentration addition

    Get PDF
    This is the post-print version of the final paper published in Aquatic Toxicology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Increasing attention is being directed at the role played by anti-androgenic chemicals in endocrine disruption of wildlife within the aquatic environment. The co-occurrence of multiple contaminants with anti-androgenic activity highlights a need for the predictive assessment of combined effects, but information about anti-androgen mixture effects on wildlife is lacking. This study evaluated the suitability of the androgenised female stickleback screen (AFSS), in which inhibition of androgen-induced spiggin production provides a quantitative assessment of anti-androgenic activity, for predicting the effect of a four component mixture of anti-androgens. The anti-androgenic activity of four known anti-androgens (vinclozolin, fenitrothion, flutamide, linuron) was evaluated from individual concentration-response data and used to design a mixture containing each chemical at equipotent concentrations. Across a 100-fold concentration range, a concentration addition approach was used to predict the response of fish to the mixture. Two studies were conducted independently at each of two laboratories. By using a novel method to adjust for differences between nominal and measured concentrations, good agreement was obtained between the actual outcome of the mixture exposure and the predicted outcome. This demonstrated for the first time that androgen receptor antagonists act in concert in an additive fashion in fish and that existing mixture methodology is effective in predicting the outcome, based on concentration-response data for individual chemicals. The sensitivity range of the AFSS assay lies within the range of anti-androgenicity reported in rivers across many locations internationally. The approach taken in our study lays the foundations for understanding how androgen receptor antagonists work together in fish and is essential in informing risk assessment methods for complex anti-androgenic mixtures in the aquatic environment.European Commission and Natural Environment Research Council
    corecore