5 research outputs found
The Electronics and Data Acquisition System of the DarkSide Dark Matter Search
It is generally inferred from astronomical measurements that Dark Matter (DM)
comprises approximately 27\% of the energy-density of the universe. If DM is a
subatomic particle, a possible candidate is a Weakly Interacting Massive
Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for
evidence of WIMP-nuclear collisions. DS is located underground at the
Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three
active, embedded components; an outer water veto (CTF), a liquid scintillator
veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper
describes the data acquisition and electronic systems of the DS detectors,
designed to detect the residual ionization from such collisions
DarkSide-50, a background free experiment for dark matter searches
The existence of dark matter is inferred from gravitational effects, but its nature remains a deep mystery. One possibility, motivated by considerations in elementary particle physics, is that dark matter consists of elementary particles, such as the hypothesized Weakly Interacting Massive Particles (WIMPs), with mass ~ 100 GeV and cross-section ~ 10−47 cm2, that can be gravitationally trapped inside our galaxy and revealed by their scattering on nuclei. It should be possible to detect WIMPs directly, as the orbital motion of the WIMPs composing the dark matter halo pervading the galaxy should result in WIMP-nucleus collisions of sufficient energy to be observable in the laboratory. The DarkSide-50 experiment is a direct WIMP search using a Liquid Argon Time Projection Chamber (LAr-TPC) with an active mass of 50 kg with a high sensitivity and an ultra-low background detector
First Results from the DarkSide-50 Dark Matter Experiment at Laboratori Nazionali del Gran Sasso
We report the first results of DarkSide-50, a direct search for dark matter operating in the un-
derground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils
possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a
Liquid Argon Time Projection Chamber with a
(
46.4
0.7
)
kg active mass, operated inside a 30 t or-
ganic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov
veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for
a
(
1422
67
)
kg d exposure with an atmospheric argon fill. This is the most sensitive dark matter
search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon
spin-independent cross section of 6.1
1
The Electronics and Data Acquisition System of the DarkSide Dark Matter Search
It is generally inferred from astronomical measurements th
at Dark
Matter (DM) comprises approximately 27% of the energy-dens
ity of the universe.
If DM is a subatomic particle, a possible candidate is a Weakl
y Interacting Mas-
sive Particle (WIMP), and the DarkSide-50 (DS) experiment i
s a direct search for
evidence of WIMP-nuclear collisions. DS is located undergr
ound at the Laboratori
Nazionali del Gran Sasso (LNGS) in Italy, and consists of thr
ee active, embedded
components; an outer water veto (CTF), a liquid scintillato
r veto (LSV), and
a liquid argon (LAr) time projection chamber (TPC). This pap
er describes the
data acquisition and electronic systems of the DS detectors
, designed to detect
the residual ionization from
Multi-Leptons with High Transverse Momentum at HERA
18 pages, 3 figures, revised version with small textual changesEvents with at least two high transverse momentum leptons (electrons or muons) are studied using the H1 and ZEUS detectors at HERA with an integrated luminosity of 0.94 fb^{-1}. The observed numbers of events are in general agreement with the Standard Model predictions. Seven di- and tri-lepton events are observed in e^+p collision data with a scalar sum of the lepton transverse momenta above 100 GeV while 1.94+-0.17 events are expected. Such events are not observed in e^-p collisions for which 1.19+-0.12 are predicted. Total visible and differential di-electron and di-muon photoproduction cross sections are extracted in a restricted phase space dominated by photon-photon collisions