5 research outputs found

    Synthesis and Characterization of Micron-size Monodisperse Carboxylated Polystyrene Microspheres

    Get PDF
    文章通过分散聚合法,以苯乙烯(ST)为聚合单体,聚乙烯吡咯烷酮(PVP)为稳定剂,偶氮二异丁腈(AIbn)为引发剂,乙醇和水作为分散介质,合成微米级聚苯乙烯微球,并以此微球为种子,利用种子修饰法进一步合成羧基聚苯乙烯微球,并对合成的羧基微球单分散性、表面形貌及表面羧基密度进行表征。结果表明,在合成的聚苯乙烯微球表面成功连接上羧基基团,微球具有较高的羧基密度,并且保持良好的单分散性,适合下一步在其表面进行化学与生物活化以制备液相芯片的敏感元件。Micron-size monodispersed polystyrene microspheres were prepared by using styrene(St),poly(N-vinylpyrrolidone)(PVP),2,2'-azo-bisisobutyronitrile(AIBN),ethanol/water,as monomer,stabilizer,initiator and the media through dispersion polymerization and then modified with carboxyl group on the surface.We also characterized the surface morphology and determined the carboxyl content of the microspheres.Monodisperse Carboxylated polystyrene microspheres with the mean size of 2.2 μm diameter and the smooth surface were obtained.The prepared microspheres are of good characteristics to be applied for the sensing unit carriers of the liquid biochips.国家国家自然科学基金(20775065;20835005);教育部高校博士点基金(20070384023);国家基础科学人才培养基金(J1030415)资

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    Prediction of Energy Resolution in the JUNO Experiment

    Get PDF
    International audienceThis paper presents the energy resolution study in the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3% at 1 MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The study reveals an energy resolution of 2.95% at 1 MeV. Furthermore, the study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data taking. Moreover, it provides a guideline in comprehending the energy resolution characteristics of liquid scintillator-based detectors
    corecore