11 research outputs found

    Evidence of Segregated Spawning in a Single Marine Fish Stock: Sympatric Divergence of Ecotypes in Icelandic Cod?

    Get PDF
    There is increasing recognition of intraspecific diversity and population structure within marine fish species, yet there is little direct evidence of the isolating mechanisms that maintain it or documentation of its ecological extent. We analyzed depth and temperature histories collected by electronic data storage tags retrieved from 104 Atlantic cod at liberty ≥1 year to evaluate a possible isolating mechanisms maintaining population structure within the Icelandic cod stock. This stock consists of two distinct behavioral types, resident coastal cod and migratory frontal cod, each occurring within two geographically distinct populations. Despite being captured together on the same spawning grounds, we show the behavioral types seem reproductively isolated by fine-scale differences in spawning habitat selection, primarily depth. Additionally, the different groups occupied distinct seasonal thermal and bathymetric niches that generally demonstrated low levels of overlap throughout the year. Our results indicate that isolating mechanisms, such as differential habitat selection during spawning, might contribute to maintaining diversity and fine-scale population structure in broadcast-spawning marine fishes

    Effects of climate and predation on subarctic crustacean populations

    No full text

    Scalable High-Power Redox Capacitors with Aligned Nanoforests of Crystalline MnO<sub>2</sub> Nanorods by High Voltage Electrophoretic Deposition

    Get PDF
    It is commonly perceived that reduction–oxidation (redox) capacitors have to sacrifice power density to achieve higher energy density than carbon-based electric double layer capacitors. In this work, we report the synergetic advantages of combining the high crystallinity of hydrothermally synthesized α-MnO<sub>2</sub> nanorods with alignment for high performance redox capacitors. Such an approach is enabled by high voltage electrophoretic deposition (HVEPD) technology which can obtain vertically aligned nanoforests with great process versatility. The scalable nanomanufacturing process is demonstrated by roll-printing an aligned forest of α-MnO<sub>2</sub> nanorods on a large flexible substrate (1 inch by 1 foot). The electrodes show very high power density (340 kW/kg at an energy density of 4.7 Wh/kg) and excellent cyclability (over 92% capacitance retention over 2000 cycles). Pretreatment of the substrate and use of a conductive holding layer have also been shown to significantly reduce the contact resistance between the aligned nanoforests and the substrates. High areal specific capacitances of around 8500 μF/cm<sup>2</sup> have been obtained for each electrode with a two-electrode device configuration. Over 93% capacitance retention was observed when the cycling current densities were increased from 0.25 to 10 mA/cm<sup>2</sup>, indicating high rate capabilities of the fabricated electrodes and resulting in the very high attainable power density. The high performance of the electrodes is attributed to the crystallographic structure, 1D morphology, aligned orientation, and low contact resistance

    Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions

    Get PDF
    Chromosomal rearrangements such as inversions can play a crucial role in maintaining polymorphism underlying complex traits and contribute to the process of speciation. In Atlantic cod (Gadus morhua), inversions of several megabases have been identified that dominate genomic differentiation between migratory and nonmigratory ecotypes in the Northeast Atlantic. Here, we show that the same genomic regions display elevated divergence and contribute to ecotype divergence in the Northwest Atlantic as well. The occurrence of these inversions on both sides of the Atlantic Ocean reveals a common evolutionary origin, predating the >100 000-year-old trans-Atlantic separation of Atlantic cod. The long-term persistence of these inversions indicates that they are maintained by selection, possibly facilitated by coevolution of genes underlying complex traits. Our data suggest that migratory behaviour is derived from more stationary, ancestral ecotypes. Overall, we identify several large genomic regions—each containing hundreds of genes—likely involved in the maintenance of genomic divergence in Atlantic cod on both sides of the Atlantic Ocean
    corecore