113 research outputs found
Smooth muscle fascicular reorientation is required for esophageal morphogenesis and dependent on Cdo.
Postnatal maturation of esophageal musculature involves proximal-to-distal replacement of smooth muscle with skeletal muscle by elusive mechanisms. We report that this process is impaired in mice lacking the cell surface receptor Cdo and identify the underlying developmental mechanism. A myogenic transition zone containing proliferative skeletal muscle precursor cells migrated in a proximal-distal direction, leaving differentiated myofibers in its wake. Distal to the transition zone, smooth muscle fascicles underwent a morphogenetic process whereby they changed their orientation relative to each other and to the lumen. Consequently, a path was cleared for the transition zone, and smooth muscle ultimately occupied only the distal-most esophagus; there was no loss of smooth muscle. Cdo(-/-) mice were specifically defective in fascicular reorientation, resulting in an aberrantly proximal skeletal-smooth muscle boundary. Furthermore, Cdo(-/-) mice displayed megaesophagus and achalasia, and their lower esophageal sphincter was resistant to nitric oxide-induced relaxation, suggesting a developmental linkage between patterning and sphincter function. Collectively, these results illuminate mechanisms of esophageal morphogenesis and motility disorders
Cyclic Expression of Lhx2 Regulates Hair Formation
Hair is important for thermoregulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is generated in hair follicles (HFs) and, following morphogenesis, HFs undergo cyclic phases of active growth (anagen), regression (catagen), and inactivity (telogen) throughout life. The transcriptional regulation of this process is not well understood. We show that the transcription factor Lhx2 is expressed in cells of the outer root sheath and a subpopulation of matrix cells during both morphogenesis and anagen. As the HFs enter telogen, expression becomes undetectable and reappears prior to initiation of anagen in the secondary hair germ. In contrast to previously published results, we find that Lhx2 is primarily expressed by precursor cells outside of the bulge region where the HF stem cells are located. This developmental, stage- and cell-specific expression suggests that Lhx2 regulates the generation and regeneration of hair. In support of this hypothesis, we show that Lhx2 is required for anagen progression and HF morphogenesis. Moreover, transgenic expression of Lhx2 in postnatal HFs is sufficient to induce anagen. Thus, our results reveal an alternative interpretation of Lhx2 function in HFs compared to previously published results, since Lhx2 is periodically expressed, primarily in precursor cells distinct from those in the bulge region, and is an essential positive regulator of hair formation
Dynamic patterning at the pylorus: Formation of an epithelial intestine–stomach boundary in late fetal life
In the adult mouse, distinct morphological and transcriptional differences separate stomach from intestinal epithelium. Remarkably, the epithelial boundary between these two organs is literally one cell thick. This discrete junction is established suddenly and precisely at embryonic day (E) 16.5, by sharpening a previously diffuse intermediate zone. In the present study, we define the dynamic transcriptome of stomach, pylorus, and intestinal tissues between E14.5 and E16.5. We show that establishment of this boundary is concomitant with the induction of over a thousand genes in intestinal epithelium, and these gene products provide intestinal character. Hence, we call this process intestinalization . We identify specific transcription factors (Hnf4Γ, Creb3l3, and Tcfec) and examine signaling pathways (Hedgehog and Wnt) that may play a role in this process. Finally, we define a unique expression domain at the pylorus itself and detect novel pylorus-specific patterns for the transcription factor Gata3 and the secreted protein nephrocan. Developmental Dynamics 238:3205–3217, 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64560/1/22134_ftp.pd
Mouse Transgenesis Identifies Conserved Functional Enhancers and cis-Regulatory Motif in the Vertebrate LIM Homeobox Gene Lhx2 Locus
The vertebrate Lhx2 is a member of the LIM homeobox family of
transcription factors. It is essential for the normal development of the
forebrain, eye, olfactory system and liver as well for the differentiation of
lymphoid cells. However, despite the highly restricted spatio-temporal
expression pattern of Lhx2, nothing is known about its
transcriptional regulation. In mammals and chicken, Crb2,
Dennd1a and Lhx2 constitute a conserved
linkage block, while the intervening Dennd1a is lost in the
fugu Lhx2 locus. To identify functional enhancers of
Lhx2, we predicted conserved noncoding elements (CNEs) in
the human, mouse and fugu Crb2-Lhx2 loci and
assayed their function in transgenic mouse at E11.5. Four of the eight CNE
constructs tested functioned as tissue-specific enhancers in specific regions of
the central nervous system and the dorsal root ganglia (DRG), recapitulating
partial and overlapping expression patterns of Lhx2 and
Crb2 genes. There was considerable overlap in the
expression domains of the CNEs, which suggests that the CNEs are either
redundant enhancers or regulating different genes in the locus. Using a large
set of CNEs (810 CNEs) associated with transcription factor-encoding genes that
express predominantly in the central nervous system, we predicted four
over-represented 8-mer motifs that are likely to be associated with expression
in the central nervous system. Mutation of one of them in a CNE that drove
reporter expression in the neural tube and DRG abolished expression in both
domains indicating that this motif is essential for expression in these domains.
The failure of the four functional enhancers to recapitulate the complete
expression pattern of Lhx2 at E11.5 indicates that there must
be other Lhx2 enhancers that are either located outside the
region investigated or divergent in mammals and fishes. Other approaches such as
sequence comparison between multiple mammals are required to identify and
characterize such enhancers
Hedgehog signalling in gut development, physiology and cancer
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90081/1/jphysiol.2011.220681.pd
Combinatorial Activation and Repression by Seven Transcription Factors Specify Drosophila Odorant Receptor Expression
A systematic analysis reveals a regulatory network controlling selective odorant receptor expression and neuronal diversity in Drosophila
Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells
Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression of the CBC stem cell-specific marker Olfm4 was directly dependent on Notch signaling, with transcription activated through RBP-Jκ binding sites in the promoter. Notch inhibition also led to precocious differentiation of epithelial progenitors into secretory cell types, including large numbers of cells that expressed both Paneth and goblet cell markers. Analysis of Notch function in Atoh1-deficient intestine demonstrated that the cellular changes were dependent on Atoh1, whereas Notch regulation of Olfm4 gene expression was Atoh1 independent. Our findings suggest that Notch targets distinct progenitor cell populations to maintain adult intestinal stem cells and to regulate cell fate choice to control epithelial cell homeostasis
Common Promoter Elements in Odorant and Vomeronasal Receptor Genes
In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions
Gradients in the in vivo intestinal stem cell compartment and their in vitro recapitulation in mimetic platforms
peer-reviewedIntestinal tissue, and specifically its mucosal layer, is a complex and gradient-rich environment. Gradients of soluble factor (BMP, Noggin, Notch, Hedgehog, and Wnt), insoluble extracellular matrix proteins (laminins, collagens, fibronectin, and their cognate receptors), stromal stiffness, oxygenation, and sheer stress induced by luminal fluid flow at the crypt-villus axis controls and supports healthy intestinal tissue homeostasis. However, due to current technological challenges, very few of these features have so far been included in in vitro intestinal tissue mimetic platforms. In this review, the tightly defined and dynamic microenvironment of the intestinal tissue is presented in detail. Additionally, the authors introduce the current state-of-the-art intestinal tissue mimetic platforms, as well as the design drawbacks and challenges they face while attempting to capture the complexity of the intestinal tissue’s physiology. Finally, the compositions of an “idealized” mimetic system is presented to guide future developmental efforts
Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs
<p>Abstract</p> <p>Background</p> <p>Mammalian olfactory receptors (ORs) are subject to a remarkable but poorly understood regime of transcriptional regulation, whereby individual olfactory neurons each express only one allele of a single member of the large OR gene family.</p> <p>Results</p> <p>We performed a rigorous search for enriched sequence motifs in the largest dataset of OR promoter regions analyzed to date. We combined measures of cross-species conservation with databases of known transcription factor binding sites and <it>ab initio </it>motif-finding algorithms. We found strong enrichment of binding sites for the O/E family of transcription factors and for homeodomain factors, both already known to be involved in the transcriptional control of ORs, but did not identify any novel enriched sequences. We also found that TATA-boxes are present in at least a subset of OR promoters.</p> <p>Conclusions</p> <p>Our rigorous approach provides a template for the analysis of the regulation of large gene families and demonstrates some of the difficulties and pitfalls of such analyses. Although currently available bioinformatics methods cannot detect all transcriptional regulatory elements, our thorough analysis of OR promoters shows that in the case of this gene family, experimental approaches have probably already identified all the binding factors common to large fractions of OR promoters.</p
- …