785 research outputs found

    Diatoms as a sea-ice proxy : improving the accuracy of sea-ice reconstruction by re-analysing the northern North Atlantic training set for Fragilariopsis oceanica, Fragilariopsis reginae-jahniae and Fossula arctica, in addition to the chrysophyte cyst Archaeomonas sp.

    Get PDF
    Significant changes in sea-ice variability have occurred in the northern North Atlantic since the last deglaciation, resulting in global scale shifts in climate. By inferring the dynamic changes of palaeo seaice to past changes in climate, it is possible to predict future changes in response to anthropogenic climate change. Diatoms allow for detailed reconstructions of palaeoceanographic and sea-ice conditions, both qualitatively, using information of species ecologies and quantitatively, via a transfer function based upon diatom species optima and tolerances of the variable to be reconstructed. Three diatom species comprising a large portion of the training set are proxies for the presence of sea ice: Fragilariopsis oceanica, Fragilariopsis reginae-jahniae and Fossula arctica, have currently been grouped into one species – F. oceanica – in the large diatom training set of the northern North Atlantic region. The clustering of the species may result in an imprecise reconstruction of sea ice that does not take into account all the available ecological information. The proportions of the three species were recounted from the original surface sediment slides alongside the additional chrysophyte cyst Archaeomonas sp. and statistically analysed using Canoco and the R software package eHOF. A core from Kangerlussuaq Trough comprising the Late Holocene (~690–1498 Common Era) was also recounted and analysed using C2. The separated diatom species and chrysophyte cyst Archaeomonas sp. exhibited different relationships to both sea-ice concentration (aSIC) and sea surface temperature (aSST). The separated F. oceanica is a ‘cold-mixed’ water species occurring at cold aSST and both low and high aSIC. High abundances occur in the marginal ice zone (MIZ) where surficial meltwater is high during the spring bloom, with additional inputs from glacial meltwaters nearshore. F. reginae-jahniae is a sea-ice associated species related to cold aSST and high aSIC. High abundances occur in the low salinity Arctic Water dominated MIZ which experiences significant aSIC. F. arctica is a sea-ice associated species related to cold aSST and high aSIC. High abundances occur in the low salinity Arctic Water dominated MIZ which experiences high aSIC, particularly in polynya conditions. F. arctica can be considered a characteristic polynya species at high abundances. Archaeomonas sp. is a ‘cold-mixed’ water species related to both cold and relatively warm aSST and low and high aSIC. High abundances occur in both relatively warm ice-free Atlantic Water and also in cold high aSIC Arctic Water conditions rendering it a more complex indicator for aSST or aSIC proxy. However, the aversion to MIZ conditions indicates that Archaeomonas sp. is associated with a relatively saline unstratified water column. This is the first time that the distribution and ecology of Archaeomonas sp. has been presented. As such, the ecology described here can be used in future studies. The separation of the three diatom species is crucial for the ecological interpretation of downcore assemblage changes. It is also crucial for the application of transfer functions in order to have greater precision in reconstructing aSIC and assessing the influence of Arctic Water or Atlantic Water, even at low abundances

    Quantifying the effects of background concentrations of crude oil pollution on sea ice albedo

    Get PDF
    Sea ice albedo plays an important role in modulating the climate of Earth and is affected by low background concentrations of oil droplets within the ice matrix that absorb solar radiation. In this study, the albedo response of three different types of bare sea ice (melting, first-year, and multi-year sea ice) are calculated at increasing mass ratios (0–1000 ng g−1) of crude oil by using a coupled atmosphere–sea ice radiative-transfer model (TUV-snow; Tropospheric Ultraviolet–Visible) over the optical wavelengths 400–700 nm. The different types of quasi-infinite-thickness sea ice exhibit different albedo responses to oil pollution, with a 1000 ng g−1 mass ratio of oil causing a decrease to 70.9 % in multi-year sea ice, 47.2 % in first-year sea ice, and 22.1 % in melting sea ice relative to the unpolluted albedo at a wavelength of 400 nm. The thickness of the sea ice is also an important factor, with realistic-thickness sea ices exhibiting similar results, albeit with a weaker albedo response for multi-year sea ice to 75.3 %, first-year sea ice to 66.3 %, and melting sea ice to 35.9 %. The type of oil also significantly affects the response of sea ice albedo, with a relatively opaque and heavy crude oil (Romashkino oil) causing a significantly larger decrease in sea ice albedo than a relatively transparent light crude oil (Petrobaltic oil). The size of the oil droplets polluting the oil also plays a minor role in the albedo response, with weathered submicrometre droplets (0.05–0.5 µm radius) of Romashkino oil being the most absorbing across the optical wavelengths considered. Therefore, the work presented here demonstrates that low background concentrations of small submicrometre- to micrometre-sized oil droplets have a significant effect on the albedo of bare sea ice. All three types of sea ice are sensitive to oil pollution; however, first-year sea ice and particularly melting sea ice are very sensitive to oil pollution.</p

    Gate-dependent magnetoresistance phenomena in carbon nanotubes

    Get PDF
    We report on the first experimental study of the magnetoresistance of double-walled carbon nanotubes under magnetic field as large as 50 Tesla. By varying the field orientation with respect to the tube axis, or by gate-mediated shifting the Fermi level position, evidences for unconventional magnetoresistance are presented and interpreted by means of theoretical calculations

    Liquitronics Final Project Report

    Get PDF
    This final project report details the design evaluation and tests the Liquitronics team conducted on the 96 well plate robotic liquid handler. The team was able to create a prototype that reflects the most important aspects the team set out to accomplish. The main focus of the semester was completing a functioning chassis and movement system along with the pipette mechanism. The following tests were completed: z-axis positional accuracy, x/y-axis positional accuracy, tip discard test, plunger actuator test, fluid volume test, sustained power draw test, and a size and weight test. Both positional accuracy tests passed without significant issues. The z-axis needed to be within 0.5 millimeters of the location for every trial, and the trial with the largest error had an error of 0.1 millimeters. Similarly, the x/y test needed each trial to be within 1 millimeter and the greatest error measured was only 0.6 millimeters. The tip discard test proved that the prototype could eject a pipette tip without fail. This test also gave the time a relationship between the voltage supplied to the linear actuator and the speed at which it moved. These results will aid in determining the working voltage for the prototype’s actuators and electronics. Unfortunately, there were two tests that did not meet their acceptance criteria. The final design is limited to a four foot wide and 2 foot deep space. The current prototype is currently 2.23 feet in both directions. However, after speaking with the project sponsor, it was agreed that the size limit was more flexible than originally stated and thus the current dimensions do not present any practical issues. Additionally, the prototype is well under the 500 pound weight limit measuring at 34 pounds. The second unsuccessful test was the sustained power draw test. This test is meant to prove that the circuitry of the prototype can run for extended periods of time without any components failing. Without any of the motors running, the prototype was drawing just over 300 milliamps. This was lower than what was expected. Also, the voltage regulator began to burn out, and 2 of the 9 stepper motor drivers stopped working. The reason for these failures is not yet known, but the team is currently brainstorming ideas for how to pinpoint the solution, and ensure that it will be fixed. Future improvements will be focused on getting a fully automated prototype. For this to happen, assembly of the mechanical parts must be completed, a full code must be written, and the power draw problems must be addressed

    Nanosecond machine learning regression with deep boosted decision trees in FPGA for high energy physics

    Full text link
    We present a novel application of the machine learning / artificial intelligence method called boosted decision trees to estimate physical quantities on field programmable gate arrays (FPGA). The software package fwXmachina features a new architecture called parallel decision paths that allows for deep decision trees with arbitrary number of input variables. It also features a new optimization scheme to use different numbers of bits for each input variable, which produces optimal physics results and ultraefficient FPGA resource utilization. Problems in high energy physics of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing transverse momentum (ETmiss) at the first level trigger system at the High Luminosity LHC (HL-LHC) experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize the firmware performance. The firmware implementation with a maximum depth of up to 10 using eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock speed, and O(0.1)% of the available FPGA resources without using digital signal processors.Comment: 27 pages, 14 figures, 5 table

    Ten years of ecosystem services matrix: Review of a (r)evolution

    Get PDF
    With the Ecosystem Service (ES) concept's popularisation, the need for robust and practical methodologies for ES assessments has increased. The ES matrix approach, linking ecosystem types or other geospatial units with ES in easy-to-apply lookup tables, was first developed ten years ago and, since then, has been broadly used. Whereas detailed methodological guidelines can be found in literature, the ES matrix approach seems to be often used in a quick (and maybe even "quick and dirty”) way. Based on a reviewa of scientific publications, in which the ES matrix approach was used, we present the diversity of application contexts, highlight trends of uses and propose future recommendations for improved applications of the ES matrix. A total of 109 studies applying the ES matrix approach and one methodological study without concrete applications were considered for the review. Amongst the main patterns observed, the ES matrix approach allows the assessment of a higher number of ES than other ES assessment methods. ES can be jointly assessed with indicators for ecosystem condition and biodiversity in the ES matrix. Although the ES matrix allows us consider many data sources to achieve the assessment scores for the individual ES, in the reviewed studies, these were mainly used together with expert-based scoring (73%) and/or ES scores that were based on an already-published ES matrix or deduced by information found in related scientific publications (51%). We must acknowledge that 27% of the studies did not clearly explain their methodology. This points out a lack of method elucidation on how the data had been used and where the scores came from. Although some studies addressed the need to consider variabilities and uncertainties in ES assessments, only a minority of studies (15%) did so. Our review shows that, in 29% of the studies, an already-existing matrix was used as an initial matrix for the assessment (mainly the same matrix from one of the Burkhard et al. papers). In 16% of the reviewed studies, no other data were used for the matrix scores or no adaptation of the existing matrix used was made. However, the actual idea of the ES scores, included in the Burkhard et al.'s matrices published 10 years ago, was to provide some examples and give inspiration for one's own studies. Therefore, we recommend to use only scores assessed for a specific study or, if one wishes to use pre-existing scores from another study, to revise them in depth, taking into account the local context of the new assessment. We also recommend to systematically report and consider variabilities and uncertainties in each ES assessment. We emphasise the need for all scientific studies to describe clearly and extensively the whole methodology used to score or evaluate ES in order to be able to rate the quality of the scores obtained. In conclusion, the application of the ES matrix has to become more transparent and integrate more variability analyses. The increasing number of studies that use the ES matrix approach confirms its success, appropriability, flexibility and utility for decision-making, as well as its ability to increase awareness of ES

    Illuminating all-hadronic final states with a photon: Exotic decays of the Higgs boson to four bottom quarks in vector boson fusion plus gamma at hadron colliders

    Full text link
    We investigate the potential to detect Higgs boson decays to four bottom quarks through a pair of pseudoscalars, a final state that is predicted by many theories beyond the Standard Model. For the first time, the signal sensitivity is evaluated for the final state using the vector boson fusion (VBF) production with and without an associated photon, for the Higgs at mH=125GeVm_H=125\,\textrm{GeV}, at hadron colliders. The signal significance is 44 to 6σ6\sigma, depending on the pseudoscalar mass mam_a, when setting the the Higgs decay branching ratio to unity, using an integrated luminosity of 150fb1150\,\textrm{fb}^{-1} at s=13TeV\sqrt{s}=13\,\textrm{TeV}. This corresponds to an upper limit of 0.30.3, on the Higgs branching ratio to four bottom quarks, with a non-observation of the decay. We also consider several variations of selection requirements - input variables for the VBF tagging and the kinematic variables for the photon - that could help guide the design of new triggers for the Run-3 period of the LHC and for the HL-LHC

    Титульные страницы и содержание

    Get PDF
    Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses
    corecore